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Given a group G acting on a set S, Mobius inversion over the lattice of sub- 
groups can be used to obtain congruences relating the number of elements of S 

stabilized by each subgroup. By taking S to be a set of subsets, partitions, or per- 
mutations congruences for binomial and multinomial coefficients. Stirling numbers 

of both kinds, and various other combinatorial sequences are derived. Congruences 
for different moduh are obtained by varying the order of G. m( 1985 Academic ores, 

Inc. 

1. INTRODUCTION 

Proving congruences by counting equivalence classes under the action of 
a finite group is not a new idea. It goes back at least one hundred years to 
a paper of Peterson [27] who used the action of the cyclic group of order p 
to prove the congruences of Fermat and Wilson. A glance at Dickson’s 
History of the Theory of Numbers [9] shows that this method has been 
rediscovered many times, but a systematic development of the area was still 
lacking. This has changed recently: Rota and Sagan [32] investigated con- 
gruences derived from groups acting on functions, Smith [38] has con- 
sidered wreath products, and Gessel [ 121 has studied congruences for 
groups acting on graphs. 

The purpose of this paper is to obtain congruences by using Mobius 
inversion over the lattice of subgroups of a given group. Since this lattice is 
difficult to work with if the group is very complicated, we will concern our- 
selves only with abelian groups. In spite of this restriction, we will be able 
to prove a long list of congruences. We will concentrate on congruences for 
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binomial and multinomial coefficients, Stirling numbers of both kinds, and 
iterated Stirling numbers. It is, however, a simple matter to apply the same 
technique and obtain congruences for other sequences enumerating labeled 
objects. Some further examples are provided in the penultimate section. 
Finally, we end with some open questions. 

2. PRELIMINARIES 

Let G be a finite group with identity element e, and let S be a finite set 
on which G acts. Given s E S, the stabilizer of s is G, : = {g E Gigs = s} and 
the orbit of s is 0,: = {t E SI t = gs for some g E G j. It is well known and 
easy to prove that 

lOA = lWG,l, (2.1) 

where I I denotes cardinality. 
An element s E S is said to be aperiodic whenever G, = e. In view of (2.1) 

s is aperiodic if and only if IO,1 = IGI so we immediately have the following 
result. 

LEMMA 1. The number of aperiodic elements in S is divisible by IGI. 

Although Lemma 1 is trivial to prove, all the other congruences in this 
paper are derived from it, making it a powerful tool. The only thing needed 
now is an expression for the number of aperiodic elements that can be 
easily computed. We will first try to solve a more general problem and then 
specialize to the case above. 

Consider the lattice P(G) of ail subgroups H d G ordered by inclusion. 
For HE L?(G) define 

a(H):= l{s~SlG,=H)l, 

then Lemma 1 can be restated 

a(e)=0 (mod ICI). (2.2) 

Calculating the values of CI directly is difficult, but there is a related 
function which is less exacting and hence easier to work with. Let 

P(H) := ljs~SlG,~H}l 

then clearly 

B(H)= 1 cf(K). (2.3) 
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To express the a’s in terms of the p’s we need the Mobius Inversion 
Theorem (see Rota [31] for details). 

THEOREM 2. Let .Y be a lattice with unique minimal element 0 and let R 
be any ring. Suppose there are two functions a, j?: 9 -+ R satisfying 
P(b)=C,., a(a) for all b E 9, then 

where p is the Mobius function of 9 defined recursively by ~(6) = 1 and 
Aa)= -C b<oAb)for a#6 

Combining Eqs. (2.2) and (2.3) with Theorem 2 we obtain 

COROLLARY 3. CHE~P(G)~(H)B(H)-O(mod ICI). 

In order to obtain congruences from Corollary 3 we need only substitute 
various groups G and sets S on which they can act. For notational con- 
venience we let [n] := { 1, 2 ,..., n> and m + [n] := (m + 1, m + 2 ,..., 
m +n}. We take G to be the abelian subgroup of the symmetric group 
which is a product of cyclic groups C,, x C,, x ... x C,,, where C, is 
generated by the cycle (J+ 1, J-t 2,..., J+ mj), J = C, <j mi. Finally, the let- 
ter p will always be used to denote a prime. 

The congruences following from Corollary 3 will be numbered 
consecutively throughout the paper on the left. Auxiliary equations will 
continue to be labeled by section on the right. 

3. THE CASE G = C, 

Here the details are particularly simple, as Y(C,,) consists of a two 
element chain 

CP 
I e . 

The Mobius function is trivial to compute from the definition in 
Theorem 2: 

cl(e) = 1 and p(C,)= -1. 

Hence Corollary 3 becomes P(e) - p(C,) = 0 (mod p) or 

B(e) = B(C,) (modp). (3.1) 
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Since all congruences in this section will be modp, we will sometimes drop 
the modulus. Now let us consider various sets on which C, can act. 

A. Binomial and Multinomial Coefficients 

Let S be the set of all k element subsets T of [n +p] and let C, act on S 
in the natural way, i.e., if gc C, and T= (tl ,..., tk} then gT= {gtl ,..., gtk). 

Proof: Since every k-subset of [n +p] is stabilized by e, we have 

For the subsets T that C, stabilizes there are two possibilities. If 1 E T 
then the repeated action of (1, 2,...,p) forces [p] c T. Now we must choose 
the remaining k-p elements of T out of the elements of p + [n], giving a 
contribution of (k 1,). If instead 1 $ T then we have T&p + [n], giving (;) 
choices for T. Hence B(C,) = (;) + (k ‘J,) and (1) follows using (3.1) and 
(3.2). 1 

As a corollary we have the well-known congruence of Lucas [24]. 

(2) If n=xjnip’ and k=xjkjp’ are the p-ary expansions of n and k 
then 

(L) =v (z) (modp). 

ProojI This is an easy induction based on the recurrence relation (1) 
and is left to the reader. 1 

If we now take S to be all partitions of [n +p] into subsets T1, T,,..., T, 
with 1 TJ = ki for i = 1, 2,..., a then we have the following analogs of (1) and 
(2) for multinomial coefficients. 

13) (k nk+’ k ) +I (k k+, kni_p 19 2,..., (I 13 
k ) (modp)’ ,..a, 0 

(4) If n = cj nj# and ki = xi k,# and the p-ary expansions of n and 
the ki then 

(k,,k: ,..., k.)-$kIj,k,:: . . . . k,)(modp)’ 
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We also obtain Fermat’s theorem: 

(5) ap=a (modp). 

prooj: aP=Ckl+kZ+...+k,,=P(k,.k~ ..,, k,) and by (4), the only nonzero 
terms, mod p, in this sum are those of the form ( 0,0 ,,,, yP ..,,, ,,). 1 

B. Stirling Numbers of the Second Kind. 

Take S to be the set of all partitions rc of [n +p] into k subsets (or 
blocks), which is counted by the Stirling number of the second kind 
S(n +p, k). The action of C, on subsets extends naturally to such par- 
titions. 

(6) S(n +p, k) = S(n + 1, k) + S(n, k-p) (modp). 

Proof. As before, B(e) = (SI = S(n +p, k). To compute /?( C,) there are 
again two cases. If { 1 } is a singleton block of n then so are 
{2}, {3},..., {P}. Th is means there are S(n, k -p) ways to choose the rest 
of the blocks of rr. If 1 is in a block of size at least two then 2, 3,...,p are 
also in the same block. Thus the set [p] is acting like a single element, 
which we shall denote by P, so we are really just partitioning the set 
{P,p+ 1, p+2 )...) p+n, \ into k blocks. This gives a final contribution of 
S(n + 1, k) to /?( C,) and hence (6) follows from (3.1). 1 

Define the falling factorial polynomial by (x), : = x(x - 1) 
(X-22)...(X--n+l). 

(7) (Lagrange [22]) (.~)~-xP-x (modp). 

Proof The identity 

.P = f S(m, k) (x)~ 
k=O 

(3.3) 

can be easily proved by counting the number of functions from a set with m 
elements to a set with x elements in two different ways (see, e.g., [lS]). 
Setting n = 0 in (6) gives 

S(p,k)=S(l,k)+S(O,k-p)=l ifk= 1 orp, 

=o otherwise, 

and inserting these values in (3.3) with m =p results in (7). 1 

The S(n, k) are periodic functions of n as is shown by the next con- 
gruence. 
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(8) (Becker and Riordan [2]). If j is defined by the equation 
p’< k <#+I then 

S(n +$( p - l), k) = S(n, k) (mod p). 

Proof: This can be proved by induction on j through repeated 
application of (6) and (2). The umbra1 calculus can also be used to make 
the proof more elegant and details of this approach can be found in [2]. 

There is also a way to derive this congruence directly by using group 
actions. Consider G = C,+ I acting on the set S of partitions of [n +p” ‘1 
into k parts. From (2.1) we see that every element of S lies in an orbit 
whose size is either divisible by p or equal to 1, hence 

P(e) = P(G). (3.4) 

To compute p(C,+l) note that either the set [#‘I J acts as a single 
element P, yielding S(n + 1, k) partitions, or [p” ‘1 is partitioned into pi 
sets of size $’ ’ - ‘, viz., {r f sp’l0 6 s Q#’ 1 - ’ - 1 } for 1 6 r <pi. Hence 
(3.4) becomes 

j+l 

qn+p’+‘, k) 3 S(n + 1, k) + c S(n, k -pi). 
i=l 

But if k<pi+’ then S(n, k-p’+‘)=0 and so 

S(n +p’+ ‘, k) = S(n + 1, k) + i S(n, k-p’) 
i=l 

=S(n+p’, k). i 

The Bell numbers, B(n) := Ck S(n, k), count all partitions of [n]. 

(9) (Touchard [40]) B(n +p) = B(n + 1) + B(n) (mod p). 

Proof: This congruence can be obtained either by taking S to be all 
partitions of [n +p] or by summing (6) for all values of k. 1 

We can also iterate (9) or use (3.4) with G = C, x CP2 x ... x C,-1 to 
obtain 

(10) (Hall [16]) B(n+(pP-l))l(~-I))-B(n)(modp). 
Our methods can also be extended to provide congruences for generating 

functions. For example, associate with each partition n: of [n] a monomial 
++x~x~.-x~, where ii is the number of blocks of size j in 7~. Define the 
nth Bell polynomial by 

&(x) : = 1 n(x), ‘IL a partition of [n], 
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then considerations similar to those that led to (6) yield the following for- 
mula of Gessel [ 123 

(11) E,,,(u)~xi;B,,(x)+~(1)I,,,B,.-,(x)(modp). 
I 

C. Stirling Numbers of the First Kind 

Consider the set of all permutations e of [n +p] with k cycles as our set 
S, with C, acting by conjugation. We define c(n +p, k):= JSI as the 
corresponding signless Stirling number of the first kind [30] (the normal 
Stirling numbers of the first kind being s(n, k) = (- l)n--k c(n, k)). All the 
congruences below are for the signless numbers, but the identities for the 
signed ones can be recovered by inserting the appropriate powers of - 1. 

(12) c(n+p,k)z(p-l)c(n,k-l)+c(n,k-p)(modp). 

Proof. The reader can easily see where the terms c(n +p, k) and 
c(n, k-p) come from. The remaining summand results from those per- 
mutations CT stabilized by C,, where 1 is in a cycle z of length at least two. 
There are p - 1 choices for r, i.e., t = (1, 2 ,..., py for some j with 1 <j -=zp, 
and there are c(n, k - 1) ways to construct the rest of g. 1 

Taking n = 0, k = 1 in (12) and recalling that ~(0, k) = ho, we have 
Wilson’s theorem. 

(13) (p- l)!=p- 1 (modp). 

These Stirling numbers behave differently from those of the second kind 
with respect to periodicity. In fact 

(14) c(n,k)zO(modp) if n>kp. 

Proof Using the fact that c(n + 1, 1) = n! = 0 for n >p, the result 
follows from (12) and induction on k. m 

To find a congruence for arbitrary values of n and k, we can induct on n 
and obtain the following corollary of (12). 

(15) c(n,n-k)s(-l)kl l’ c(n,,n,-k,)(modp), 
0 1 

where n=n,p+n,, O<n,<p, and k=k,(p-l)+k,,O<k,<p- 1. 
Equation (15), in its turn, yields as a corollary the following result of 
Gupta [IS]. 

(16) c(np, k) = 0, ifp- 1 jnp-k (mod pb 

=(-1)” ; ) 
0 

ifm(p-l)=np-k(modp). 
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D. Iterated Stirling Numbers 

The iterated Stirling numbers were introduced by Bell [3,4] and are 
derived from Stirling’s triangle by repeated matrix multiplication. 
Specifically, for s > 0 we define the numbers S(n, k, s) by 

and 

S(n, k, 1) :=S(n, k) 

S(n, k, s) := f: S( n, i, 1) . S(i, k, s - 1). (3.5) 
i=O 

Note that if the index s, called the stuck, is zero then equation (3.5) forces 

S(n, k, 0) = 6,,. 

The notation used above differs from other papers on the subject [2, 53 in 
that the first two indices are transposed. We also have the corresponding 
iterated Bell numbers, B(n, s) : = Ck S(n, k, i). 

We shall call the objects counted by B(n, s) s-foldpartitions of [n]. An s- 
fold partition nIL, is obtained by partitioning a set {B,, B2,..., Bi) whose 
elements are the blocks of an (s - 1 )-fold partition, e.g., the l-fold partition 
n1= (133) (274) (5) g ives rise to 2-fold partitions such as n2 = { { 1, 3}, 
(5) } { { 2,4} }. The elements of [n) are called blocks of depth 0, and for 
t > 0 the blocks of depth t are those sets whose elements are blocks of depth 
t - 1. For example, in 7~~ the depth of { 1,3} is 1 while the depth of { (1, 3}, 
{ 5} } is 2. If we take S to be the set of s-fold partitions of [n + p] into k 
blocks of depth s then clearly ISI = S(n +p, k, s). 

(17) 
s-l n 

S(n +p, k, s) = S(n, k-p, s) + c c S(n, i, t) 
r=O i=O 

x S(i+ 1, k, s-t) (modp). 

Proof To obtain the right-hand side of (17) we must count those n, E S 
which are stabilized by C,. A singleton block of n, is one which contains a 
single element of [n]. Let t be the maximum depth of a singleton block 
containing 1 so that 0 6 t <s. If t = s then 2, 3,..., p are also in singleton 
blocks of depth s and there are S(n, k -p, s) ways to build the rest of rc,. If 
t < s then 2, 3,..., p are in singleton blocks of depth t but the block of depth 
t + 1 containing 1 also contains 2, 3,..., p. Letting the number of depth t 
blocks be i + p, 0 Q i d n, we see that there are S(n, i, t) ways to choose the 
blocks of depth at most t and S(i+ 1, k, s - t) ways to choose the blocks of 
depth greater than t. i 
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Analogous to Eqs. (8) (9) and (lo), we have three results first obtained 
by Becker and Riordan [2]. These congruences follow from (17) in the 
same way that (8)-( 10) follow from (6). 

(18) Let qm =pP”‘, where m is chosen so that q,+, <s d q,,!. If 
4’; ’ p’ 6 k < @,,, p’ then 

S(n + @,(q, - 1 ), k, S) =, S(n, k, s) (mod p). 

(19) B(n+p,s)=B(n,s)+C:=~Cr=,S(n,i,t) B(i+l, s-t) (modp). 

(20) Ifp”-‘<s<p” and qm=ppm then 

~(n + qm - 1, S) = B(n, s) (modp). 

We can extend the definition of S(n, k, S) to include negative values of s. 
From Eq. (3.5) we see that 

S(n, k, - 1) = s(n, k). 

In general, if s< 0 the numbers c(n, k, IsI)= IS(n, k, s)l count lsl-fold 
permutations of [In] with k cycles of depth Is/. The corresponding “Bell 
numbers” are b(n, IsI) : = Ck c(n, k, IsI). For convenience’s sake we will 
henceforth drop the absolute value signs and take s to be positive. The next 
four congruences are, to my knowledge, new. 

(21) c(n-tp,k,s)rc(n,k-p,s)+(p- l)~C;,,C:,,,c(n, i, t) 

xc(i+l,k,s-t) (modp). 

Proof: This generalization of (12) is proved in a manner similar to the 
demonstration of (17). We omit the details. i 

Using (14) and either (21) or (3.5) we have 

(22) c(n, k, s) = 0 (modp) if n > kp”. 

Consideration of all s-fold permutations of [n] yields 

(23) b(n+p,s)-b(n,~)+(~-l).Cs=~C1=~ c(n,i,t) b(i+l,s-t) 
(mod PI. 

Finally we show that these bell numbers have period 1. 

(24) b(n,s)~O (modp) if n>p”-‘(p-l)),s>O. 

Proof. Induct on s using the fact that b(n, 1) = n ! z 0 if n > p - 1. 1 

The methods of this section can be easily extended to the group C,, 
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thereby providing congruences module p’. Since Y(C,,) is a chain with one 
subgroup Hi of order pi for 0 < id r we have 

PIHi) = + l, 
i = 0, 

=- 1, i= 1, 

= 0, i> 2. 

Hence Corollary 3 becomes 

B(e) = B(f&) - PVC 1 (modp’). (3.6) 

This approach has been used in conjunction with Polya actions in Rota 
and Sagan [32], however, the congruences obtained are not always the 
best possible. It turns out to be more efficient to use products of cyclic 
groups as will be shown in the next two sections. By way of illustration, in 
Section 4 we work out some example for r = 2 in detail. Finally the general 
case is treated in Section 5. 

4. THE CASE G=C,XC, 

For notational convenience let r~ = (1, 2 ,..., p), z = (p + 1, p + 2 ,..., 2p), 
and for A c G let (A ) denote the subgroup generated by A. The lattice 
T(C, x C,) is pictured in Fig. 1; note that there are p + 1 subgroups of 
order p. 

The Mobius function for each Hg G is easily seen to be 

AW= 1 if IHI = 1, 

=- 1 if IHl =p, (4.1) 

= P if JHI =p*. 

Hence we need only compute P(H) to obtain congruences modulop’. 

FIGURE 1 
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A, Binomial and Multinomial Coefficients 

Proof: Let S= (TITS [n+2pJ} and let G = C, x C, act on S. As 
before P(e) = (” >2* ) and /?((a))=fl((~))=(~:p)+(;+;) accounting for 
the first three terms of (25). For the group (a. r) we have four cases 
depending on which of the two elements 1, p + 1 are in T, hence 

Since all p - 1 of the subgroups (a ’ z’), 1 < i <p - 1, as well as the full 
group stabilize the same sets and p(G) = p we obtain a final contribution of 

-(p-l)[(~)+2(,1p)+(~~2p~] 

+p[(~)+2(,r,)+(,r,)II. ’ 

Using the recursion relation (25) and induction on n we can prove the 
following strengthening of Lucas’ congruence for the case when the size of 
the set is dividible byp. 

(26) If k = k, p + kO, 0 d k, <p, then 

if k0 = 0, 

=n (nk,1)([j (modp’) if k,#O. 

Kazandzidis [ 19,203 has investigated extensions of Lucas’ results for 
odd primes. If we adopt the usual conventions 

:=(-l)k (“-L-‘) if n<O, 

then a double induction and (25) yields 
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(27) Forpa and n=n,p+n,, k=k,p+k, with O<n,,k,<p, we 
have 

Taking specific values for n, and/or k, in (27) results in various simple 
formulas, e.g., 

(28) (Kazandzidis [19]) If p 2 3 then 

Analogs of these congruences can be proved for multinomial coefficients. 
Two examples are 

(29) (k*:klZqk,)-2gk ,,..., kni+_pp )..., k.) 
+c 

n 
ij k ,,..., ki-p ,..., kj-p ,... 

= 0 (mod p*). 

(30) If k,=kilp+k, with O<k,<p for l<i<a then 

if k,,=OVi. 

= 0 (mod p*) if 1 k, > 2p. 

The third part of Eq. (30) illustrates the more general result of Singmaster 
[34, 351 that the highest power ofp dividing (kl,k:,,..,kp) is equal to the num- 
ber of carries in the addition xi kj in p-ary arithmetic. 

B. Stirling Numbers of the Second Kind 

Take S = {rrln a partition of [n + 2p] into k blocks}. 

(31) S(n+2p,k)-2 i S(n+p+i,k+(i-1)p) 
i=O 

+ i 5 S(n+i,k+(i-2)p) 
i=o 0 

-p(p- 1) S(n, k-p)=0 (modp’). 
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Prooj The first half of (31) comes from the action of the subgroups 
(e), (cJ), and (r ). The second summation is the contribution from 
(a. ri). 1 < i <p - 1, and (a, r) acting on partitions, where the sets [p] 
and p + [p] are either divided into singletons or are contained wholly in 
one block. Finally, there are partitions stabilized by ( CJ. z ) consisting of p 
doubletons of the form (1, f>, (2, r(t)),..., (p, rp- l(t)}, tcsp+ [p], and a 
partition of 2p + [n] into k-p parts, for which there are p. S(n, k-p) 
possibilities. Since the same count holds for all p - 1 of the subgroups 
( CJ. t’), 1 < i 6 p - 1, each having Mobius function - 1, we get a total con- 
tribution of -(p- l).pS(n, k-p). 1 

Enlarging the set S to all partitions of [n + 2p] we obtain 

(32) B(n+2p)-2 i B(n+p+i)+ f B(n+i)-p(p- l)B(n) 
I=0 ,=O 

= 0 (mod p’). 

It is useful to express complicated congruences like (31) and (32) in 
umbra1 form. If we define the shift operator E acting on a function f(n) by 
Ef(n) : = f(n + 1) then (32) becomes 

[E2p - 2(Ep+ ’ + Ep) + ( E2 + 2E + 1) -p(p - 1 )] B(n) = 0 (mod p’). 

Hence we have 

[(Ep-E- l)‘-p(p- l)] B(n)=0 (modp2) (4.2) 

which also appears in Lunnon, Pleasants, and Stephens [25], and Gessel 
1121. 

Following Becker and Riordan [2], we extend the shift operator to 
iterated Bell and Stirling numbers. The operators E, are defined by the 
equations 

E,B(n, s) := C B(i+ 1, t) S(n, i, s- t), 

E,S(n, k, s) := c S(i+ 1, k, t) S(n, i, s- t). 

In particular, 

E,yB(n,s)=xB(i+ l,~)S(n, i,O) 

= B(n + 1, s), 
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since S(n, i, 0) = dni. Also 

E,S(n, k, s)=C S(i+ 1, k, O)S(n, i,s) 

= S(n, k - 1, s) 

so we can rewrite (31) as 

[(ET-E, -Et)*-p(p- 1) E$] S(n, k)zO (modp*). (4.3) 

We should note that with the help of (26), Eqs. (4.2) and (4.3) can now be 
used to derive the periods of the Bell and Stirling numbers modp’. 
However, these derivations offer no new concepts so we will defer them 
until we deal with congruences modulo an arbitrary prime power in the 
next section. 

Umbra1 notation is also extremely useful in simplifying congruences for 
s-fold partitions and permutations s B 2. For example, if we replace t by 
s-t in Eq. (17) we get 

Finally, it is most convenient to write the congruences for multinomial 
coefficients in terms of the reverse sh$t operators F, defined by 

Fi(kl,k: ,..., k,):= (k ,,..., ;,: ,..., k,)’ 

Hence we can simplify (29) to 

5. THE CASE G = C; 

The group C; (written additively) is an r-dimensional vector space over 
the Galois field GF(p) and so the number of subgroups of order pd is just 
the number of subspaces of dimension d. A well-known result (see, e.g., 
Andrews [ 1, Theorem 13.11) states that this number is the Gaussian or p- 
binomial coefficient 

r [I 
(P’-l)(p’-*-l)...(p’~d+l-l) 

d P= (pd- I)(@-‘- l)...(p- 1) . 
(5.1) 
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All subgroups H d C; of order pi are isomorphic to C; so we need only 
calculate the Mobius function of the whole group. This is also well known 
(see [31]) but we include this calculation out of interest. 

LEMMA 4. p(C;)=(-l)‘p(;). 

Proof. Induct on r. We have already seen that the lemma holds for 
r Q 2 (Eq. (4.1)). For the induction step 

AC;)= - 1 P(H) 

= -d;r C ( -l)dp(g) by induction, 

,H:pd 

by (5.11, 

where the last equality is the p-analog of the alternating sum of binomial 
coefficients [ 1, Theorem 3.33. 

A. Binomial and Multinomial Coefficients 

(33) i (-l)j i=. (:)~~(i)(~I:‘d)-O(modp’), 

or in umbra1 form 

Proof: Consider the cycles crj = (jp + 1, jp + 2,...,jp +p), 0 <j < r. Given 
g E C;, g = lJ;~d. a?,, then oj is a factor of g if p jn,. We say that a subgroup 
H < CF, is associated with i cycles if the set of all factors of elements of H 
contains exactly i of the cycles aj. Equivalently His associated with i cycles 
if and only if the smallest subgroup of the form R= (Ok,, oj,,...) containing 
H has i generators. 

If H is associated with i cycles and stabilizes a subset Tc [n + rp], then 
each of the i cycles is either completely contained in or completely disjoint 
from T. Choosing j of the cycles to be in T can be done in (i) ways and the 
rest of T can be completed in (;I$) ways thus 
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Since there are (;) subgroups of the form i7; to complete the proof we 
need only show that for each choice of I? we have 

CPU-+-l)i, 
H 

where the sum is over all H < E7 such that H is associated with i cycles. By 
the principle of inclusion and exclusion [33, Theorem 1.11 the number of 
subgroups of I? having order pd and associated with i cycles is 

Since each of these subgroups has Mobius function ( - l)dp (3 , we have 

The corresponding result for multinomial coefficients is 

(34) (l-~,~~~(k,rk:,lpk,)~O(modp’). 

Equation (34) may be used inductively to prove various congruences for 
specific values of the upper index. By way of example, we give the following 
result which has been observed by Kazandzidis [19], Rota and Sagan 
[32], and Smith [38]. 

(35) 

where by convention a multinomial coefficient containing a nonintegral 
fraction is zero. 
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B. Stirling Numbers elf’ the Second Kind 

It will be convenient to express the congruences in this subsection in 
terms of a new umbra1 operator ( ): defined by 

(U+ V)l,:= 1 S(r, i) U’v’-~‘, 
I=0 

where U and V can be either numbers or other operators. In words, the 
operator ( )> replaces the binomial coefficients in the normal expansion of 
the rth power with Stirling numbers of the second kind. Note that since 
Stirling’s triangle is not symmetric, elements inside the operator do not 
commute, i.e., in general (U + V);. # ( I/ + U);. 

i St&A-p(p--l)l’ J 
j=O 

i (is1F6ij) S(n+(r-i)p+Z,k-(j-Z)p)=O(modp’). 
/=O 

Equivalently, 

(Ef-F”,[(E, +EP,)-p(p- l)]JS(n, k)-0 (modp’), 

where (F;)’ ({) : = (J- I,++) 

ProoJ: If a subgroup H stabilizes a partition rt of [n + rp], then 7~ 
induces a partition il of the cycles associated with H. Specifically, era and gb 
are in the same block of r? if and only if some element of (TV appears in the 
same block with some element of gb in 7t (hence every element of 0” 
appears in a block with some element of ub in rr). This accounts for the 
S(i,j) term in (36), the rest of the proof being similar to that of (33). 1 

The periods of these Stirling numbers modulo p’ can be derived from the 
recursion above. 

(37) (Carlitz [S]) If $6 k<p’+’ then 

S(n+p’+j(p-1), k)-S(n, k)(mod p’). 

We also have the corresponding results for the Bell numbers 

B(n+ (r-i)p+Z)=O (modp’) 

or (ET-F;[(E,+l)-p(p-l)],)‘B(n)=O(modp’). 
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(39) (Lunnon, Pleasants, and Stephens [25]) 

C. Stirling Numbers of the First Kind 

We define the operator ( ): by 

(U+ V); := i c(r, i) u’v’-’ 
i=o 

and proceed as in the last subsection. The reader can fill in the details of 
the proofs. 

i c(i,j)[ -p(p- l)]‘-‘, 
j=O 

(p - 1)’ c(n + (r - i) p, k - (j - 1) p - I) = 0 (mod p’), 

or in umbra1 notation, 

(~~--F”,C(~-~)E0+E~)--p(p--1)1,)’c(n,k)-0(modp’). 

(41) If n > krp then 

c(n, k) = 0 (modp’). 

D. Iterated Stirling Numbers 

The only new observation here is that when an s-fold partition z,? is 
stabilized by a subgroup H then there is an induced partition E, on the 
cycles associated with H which is also s-fold. Some of the congruences 
obtained are complicated enough that we will only state them in their 
umbra1 forms 

(42) 
S-1 

E:- c F;C&‘-p(p- I)],- F;[(E, + E,P) 
t=1 

> 

r 

-P(P- 11s S(n, k, s) G 0 (mod p’). 

(43) (Carlitz [S]) If qm=ppm, where qrneI <sGq, and q’,-‘p’d 
k < q&p’ then 
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S(n+p’.q’,(q,,- l), k, s)=S(n, k, s) (modp’). 

( 

.s 1 
(44 1 Ef- 1 F;[E;-p(p-I&-F”,[(E,+l) 

/=I 

1 

r 
-IO- 111s B(n, s) E 0 (mod p” ). 

(45) (Car& [IS]) If qm=pd”, where q,,-, <s<qq, then 

B(n~p’-‘(q,-l),s)~~(n) (mod@). 

s-2 

(46) E,P- c ~“,C(P-~)E,-P(~-~)I~-~~[((~-~)E,+EOP) 
r=O 

‘c(n,k,s)=O(modp’). 

(47) If n > krp” then 

c(n, k, s) = 0 (mod p’). 

( 

5-Z 

(48 1 EP- c F”,C(p-l)E,-p(p-l)l,.-F~IT((p-1)Eo+E~) 
I=0 

r -P(P- l)l,. 
> 

b(n, s) s 0 (mod p’). 

(49) If n>rp”-*(P-- 1) and s>O then 

b(n, s) E 0 (modp’). 

6. CONGRUENCES MODULO m 

Let m be an arbitrary positive integer. There are several ways to derive 
congruences modulo m. The first is to factor m, m = nip?, and use the 
results of previous sections. 

For example, if m = nipi is a product of distinct primes then for each 
prime pi we have 

(.P-E-l)B(n)~O(modp,) 

by Touchard’s congruence (9). Hence 

(50) If m = JJ;= 1 pi then 

I. .IJ (EJJI-E- I)] B(~)=o (mod m). 
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It follows that the period of B(n) mod m is just the least common multiple 
of the periods mod pi, in this case 

LCM C(P~‘- l)/(~i- 111. 

A second way to obtain results modulo m = n,pg’ is to use group actions 
directly. The abelian group yielding the best congruences is ni(C;,:), where 

as lattices since the orders of the groups C,“: are relatively prime. 
To see how this method applies to (50), consider the group 

G = C,, x C,, x . . . x C,,. Now LZ( G) is isomorphic to the Bollean Algebra 
of rank r since each subset TG [r] corresponds to the subgroup 
HT=I-L,T C,,, thus PL(HT) = (- 1) Iq. Also H, stabilizes all partitions of 
[n + Cipi], where the elements of each CPl are singletons or act as if 
coalesced into one element. If we let j denote the number of C,, which 
coalesce and set prc = C, + TpI then 

B(H,)=@/TI) W~+PK+~ 
i 

Hence 

1 P(HT)P(HT)= 
TC [r] 

E 0 (mod m) 

which is precisely (50) expressed as a sum. 
Since it is a straightforward matter to extend these methods to products 

of prime powers, we suppress the details. The analogs for multinomial coef- 
ficients and iterated Stirling numbers of both kinds are also easily derived. 

More interesting congruences can be obtained from the action of C, 
itself. In this case P(C,) is isomorphic to the lattice of divisors of m. In 
fact each d where dim corresponds to the subgroup H, generated by the 
product 

mid 
4 

m 
i, i+--, i+2! 

m 

i= 1 

d d,...,i+m-d . 
> 

Hence Corollary 3 becomes 

641'20!2-4 
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c PL(ffd) B(Hd) = 2 P(d) P(ffd) H,IE YlCml dim (6.1) 
-0 (modm), 

where p(d) is the classical Mobius function. Applying (6.1) to various sets, 
S, allows us to obtain congruences involving this number theoretic 
function. Since the details are similar to those of the last section, we omit 
them, All congruences will be stated in both the explicit and umbra1 forms. 

A. Binomial and Multinomial Coefficients 

(51B) 1 p(d)(F;‘+F$)“Id 
dim 

k, - i, d,..., k, - i,d 

(52B) c p(d)(F;‘+Fg+ ... +Fi)“‘ld 
dim 

B. Stirling Numbers of the Second Kind 

(53A) 2 p(d) y (m/? j$O S(k.0 8-j 
dim i=O 

x S(n + (m/d) - i, k - dj) 5 0 (mod m). 

(53B) c k(d)[E, + (E$ + d),]“ldS(n, k) = 0 (mod m). 
dim 

(54A) c Ad) y 
dim i=O 

i S(i,j) d-j B(n + (m/d) - i) = 0 (mod m). 
J=o 

(54B) 1 p(d)[E, + (1 + d),lmld B(n) =O (mod m). 
dim 
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C. Stirling Numbers of the First Kind 

(55A) c p(d) F (m/d) (d- 1)+-l 
dim i=O 

x i c(i,j) d’-jc(n, k-dj-(m/d)+i)-0 (modm). 
j=O 

(55B) c p(d)[(d- l)E,+(E,d+d),]m’dc(n, k)rO (modm). 
dl m  

D. Iterated Stirling Numbers 

The formulas here are sufficiently complicated that we will only present 
them in the umbra1 form. 

s-1 

1 
m/d 

(56) C p(d) Es+ c (E,+d)s+(E,d+d)s 
dim t=1 

x S(n, k, s) = 0 (mod m). 

s-1 

1 
mid 

(57) c /44 Es+ c (Et+d)s+(l+d)s B(n, s) G 0 (mod m). 
dim r=1 

i 

s-2 m/d 

(58) C p(d) (d-l)&-,+ c C(d-UE,+dl,+(Et+4, 
dim t=0 

x c(n, k, s) z 0 (mod m). 

i 

s-2 

1 

m/d 

(59) 1 Ad) Cd-l)Es-,+ 1 [Cd-l)E,+dl,+(l+d), 
dim I=0 

x b(n, s) = 0 (mod m). 

7. FURTHER EXAMPLES 

We have far from exhausted the possible sets upon which our groups can 
act. In this section we will mention some other examples which have 
appeared in various areas of combinatorics and group theory. 

A. Preferential Arrangements 

A preferential arrangement of the set [n] consists of a partition z of [n] 
together with a linear order on the blocks of X, e.g., the preferential 
arrangement { 1,3}, (2) is different from the arrangement {2}, { 1,3}. 
Physically preferential arrangements can be thought of as describing the 



232 BRUCE E. SAGAN 

possible outcomes of a race where ties are permitted. Preferential 
arrangements were first studied by Touchard [40], rediscovered by Gross 
[ 141, and then re-rediscovered by Good [ 131. 

Let A(n, k) be the number of preferential arrangements of [In] with k 
blocks and let P(n) = XI, A(n, k). Clearly A(n, k) is just the number of sur- 
jections f: [In] --H [k] so A(n, k) = k! S(n, k). Thus we would expect the 
numbers A(n, k) to have arithmetic properties similar to the Stirling num- 
bers of the second kind but simpler (because of the factorial). This is borne 
out by applying group actions. 

First let C, act in the natural way on preferential arrangements of 
[n +p] with k blocks and use (3.1). Clearly partitions where 1, 2,..., p are 
singletons are no longer stable because of the order on the blocks thus 
fl(C,) = A(n + 1, k), and so A(n +p, k) = A(n + 1, k). Hence A(n, k) has 
period p - 1 module p for all k, and for k 3p we have A(n, k) s 0 (mod p). 
Acting with the group C’, and using (3.6) we find, that A(n, k) has period 
p’+‘(p- 1) for nap’ -r and is congruent to 0 for sufficiently large k. Now 
applying the methods of Section 6 we can obtain a result of Touchard 
c401, 

(60) Let m = nip7 and let 4 be Euler’s function, then for 
n>max, (p?-‘) we have 

A(n-t#(m),k)rA(n,k) (modm), 

P(n + 4(m), k) z P(n, k) (mod m). 

One could now consider s-fold preferential arrangments modelling, say, 
the results of s races where the people who tie in each category of race i 
compete only among themselves in race i + 1. We leave this as an exercise. 

B. Involutions 

Let u(n) be the number of involutions in the symmetric group C,, i.e., 
the number of permutations of [n] such that oz= e. Equivalently v(n) 
counts the number of CJ E x,, whose canonical decomposition contains only 
one-cycles and two-cycles. Since conjugation preserves cycle structure, we 
have a well-defined action of C, on involutions. This permits us to derive 
three congruences due to Chowla, Herstein, and Moore [7]. 

(61) For p > 3 we have 

v(n +p’) z v(n) (modp’). 

Proof. We will actually prove the finer result that if w(n, k) is the num- 
ber of involutions in C,, with k two cycles then 

w(n +pr, k) = w(n, k) (mod p’). (7.1) 
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Note that (7.1) implies by an easy induction that 

for k> 1. 

w(np’, k) 3 0 (mod p’) (7.2) 

When r = 1, the action of C, stabilizes only involutions of the form (1) 
(2) **. (p) r, where 7 is an involution of p + [n] (since p 2 3, the cycle 
(1,2 ,..., py’, 1 <j<p, is not an involution). Hence w(n +p, k) = w(n, k) 
(mod P). 

Considering the action of G = C,, on C,, +P, we see that G’s subgroup H, 
of order p stabilizes involutions of the form c * 7, where c is an involution 
of [p’] and 7 is an involution of pr + [n]. Since H, stabilizes cr, rr itself 
induces an involution 5 on the p’- ’ cycles of Hr. If 5 has i cycles of length 
two then there are pi different involutions of [p’] that induce 5, giving 
w(p’- l, i) .pi choices for 6. Since 0 must have p. i two-cycles there are 
w(n, k -pi) choices for 7 and so (3.6) yields 

w(n+p’, k)Ex w(n, k-pi). w(p’-‘, i).p’(modp’). 

However by induction on r and Eq. (7.2) we have p’- ’ +‘I w(pr- ‘, i) pi for 
i 2 1 so this term is zero mod p’ if i # 0. Hence (7.1) follows. 1 

As an immediate corollary we have 

(62) If m is odd, then 

u(n + m) E u(n) (mod m). 

Applying the action of C; and arguments similar to those in the proof of 
(61) we obtain 

(63) If n>4r-2 then 

u(n) E 0 (mod 2’). 

In a like manner, results can be derived for the number of permutations 
in C, whose dth power is the identity. These congruences have been 
derived using different techniques by Chowla, Herstein, and Scott [S] and 
Moser and Wyman [26]. 

C. Derangements and the Cycle Indicator 

Another subset of 2, that is often studied is the set of derangements 
[30, 331. A derangement is a permutation of [n] having no fixed points. 
Hence conjugation also leaves the set of derangements invariant. 
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Let d(n) be the number of derangements of [n] and consider the action 
of C,. Since 1, 2,..., p can no longer be fixed points (cf. Eq. (12)) we have 

d(n+p)=(p- l)d(n)(modp) 

E -d(n) (modp). 

As in the case of involutions, similar considerations with products of the 
CPr for different prime powers lead to 

(64) d(n+m)=(-l)“d(n) (modm). 

One can obviously use these methods to obtain congruences for any set 
of permutations having the same cycle structure. In terms of generating 
functions, associate with each (T E C, the monomial 

B(x)=o(xl, x2 )...) x,) := xflxi,2...xff, 

where ij is the number of cycles of length j in (T. Define the nth cycle 
indicator polynomial by c,(x) := CotL. o(x). In this notation we have 
v(n) = c,( 1, 1,O ,..., 0) and d(n) = c,(O, I, l,..., 1). It has been noted by Rior- 
dan [30] that 

C n+m(x)-cn(~)~cm(x) (modm) 

and Gessel [ 123 has given a proof using group actions on graphs. It is also 
possible to prove this using our techniques, but we leave the details to the 
reader. 

8. COMMENTS AND QUESTIONS 

Several observations and queries about the methods we have introduced 
are in order. 

(A) It should now be apparent that a large number of congruences 
follow from Corollary 3. Are there other results from the literature that can 
be obtained in this way? It seems likely that many of the sequences in 
Sloane’s handbook [37] could be so analyzed. 

(B) The use of group actions helps to explain why binomial coef- 
ficients and Stirling numbers of both kinds satisfy similar recurrence 
relations modulo p (compare Eqs. (l), (6), and (12)). Instead of applying 
ad hoc techniques in each case, we are able to give a unified treatment to 
several seemingly unrelated congruences. 

(C) One of the problems that can arise is finding the appropriate 
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action. Two important examples are generalized Euler permutations and 
integer partitions. 

A generalized Euler permutation of bn] is a sequence a,, a,,..., apn such 
that a, > a,, I precisely when p divides i. Congruences for the number of 
generalized Euler permutations have been proved by Gessel [ 111, Leeming 
and MacLeod [23], and Stevens [39]. Gessel [ 121 has found an action 
for C, on these permutations but it does not extend immediately to other 
abelian groups. 

The number of ways of writing n as a sum of positive integers denoted 
p(n) is called the number of integer partitions of n. The function p(n) has 
many interesting arithmetic properties which have been studied by 
Ramanujan [29, Paper 253, Knopp [21] and others. In contrast to set par- 
titions, however, it is not even obvious how to let the group C, act on 
integer partitions. 

(D) In order to obtain better congruences it is often necessary to 
employ more complicated groups. Unfortunately this makes it harder to 
compute with the full lattice of subgroups. One can instead use the period 
sublattice described by Rota and Sagan [32], but this is only possible 
when counting functions under the usual Polya action [28]. Are there 
other sublattices which yield interesting results? 

(E) In Section 6 we were able to give congruences for the classical 
Mobius function by picking the appropriate group. Specialization to the 
period lattice also gives congruences for Euler’s phi-function. Perhaps one 
can also investigate the arithmetic properties of other number theoretic 
functions, e.g., r and I, in this setting. 
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