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HÉCTOR A. CHANG-LARA, NESTOR GUILLEN, AND RUSSELL W. SCHWAB

Abstract. In this work we demonstrate that a class of some one and two phase free boundary problems
can be recast as nonlocal parabolic equations on a submanifold. The canonical examples would be one-
phase Hele Shaw flow, as well as its two-phase analog. We also treat nonlinear versions of both one
and two phase problems. In the special class of free boundaries that are graphs over Rd, we give
a precise characterization that shows their motion is equivalent to that of a solution of a nonlocal
(fractional), nonlinear parabolic equation for functions on Rd. Our main observation is that the free
boundary condition defines a nonlocal operator having what we call the Global Comparison Property.
A consequence of the connection with nonlocal parabolic equations is that for free boundary problems
arising from translation invariant elliptic operators in the positive and negative phases, one obtains, in
a uniform treatment for all of the problems (one and two phase), a propagation of modulus of continuity
for viscosity solutions of the free boundary flow.

1. Introduction

In this work we demonstrate that some free boundary problems can be formulated as nonlocal
parabolic equations. For both simplicity and technical restrictions, we focus on those problems that
describe the motion of the graph of a function over Rd. Further assumptions appear in Section 2.2.
We elaborate on these assumptions and the possibility to reduce and/or modify them in Section 12.
Specifically, we investigate the class of free boundary problems that have the following form:

U : Rd+1 × [0, T ]→ R,

and U solves (in a way to be made precise in Section 9),
F1(D2U,∇U) = 0 in {U > 0}
F2(D2U,∇U) = 0 in

(
{U > 0}C

)◦
V = G(∂+

n U, ∂
−
n U) on Γ = ∂{U > 0},

(1.1)

where n is the inward normal direction to the positivity region, {U > 0}. The derivatives, ∂±n U ,
are computed from respectively the positive and the negative phases, normalized so that both ∂+

n U
and ∂−n U are positive quantities. This means that the free boundary, denoted as Γ(t), evolves by the
normal velocity field given by V , which of course depends on U (so, when U is nice enough, these
dynamics track the evolution of the graph of ∂{U(·, t) > 0}). Or, if one prefers to think in a level set
formulation of the flow, this velocity condition would mean that

on ∂{U(·, t) > 0}, the equation is ∂tU = G(∂+
n U, ∂

−
n U) |∇U | .

As one can see, ∇U± play the roles of the gradient of the pressures in their respective phases; these
quantities drive the flow, and the velocity is determined by the balance law, G. Some common examples
are expanded upon in Section 3.
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Here, the operators, F1 and F2, are translation invariant and either both uniformly elliptic or one is
uniformly elliptic and the other is zero only when U is identically zero (for one-phase problems). More
detailed assumptions appear in Section 2.2. The canonical example would be F1(D2U,∇U) = ∆U
and the operator F2(D2U,∇U) is only zero when U− is identically zero, which would give what many
authors call the one-phase Hele-Shaw flow. The two-phase analog would be when, e.g. F1(D2U,∇U) =
F2(D2U,∇U) = ∆U . The nonlocal parabolic equations that arise take place on Rd, and they have the
form,

f : Rd × [0, T ]→ R
∂tf = G(I+(f)) ·

√
1 + |∇f | in Rd × [0, T ] (for the one-phase problem),

or ∂tf = G(I+(f), I−(f)) ·
√

1 + |∇f | in Rd × [0, T ] (for the two-phase problem),

(1.2)

where G is the prescribed velocity function as above, and I± are (nonlinear) fractional order nonlocal
operators acting on functions f ∈ C1,γ(Rd), and they enjoy the global comparison principle. Roughly
speaking, I± linearize to integro-differential operators in the class that given by

L(f, x) = b(x) · ∇f(x) +

∫
Rd
f(x+ h)− f(x)− (∇f(x) · h) 1B1(h) µ(x, dh), (1.3)

where for each x, µ(x, dh) is a Lévy measure on Rd.
We informally state our main results here, and then they will be expanded upon and split into

separate, more precise results in later sections. They state, under a graph assumption for the free
boundary, an equivalence between viscosity solutions of the free boundary and fractional parabolic
equations, and also a preservation of modulus of continuity of the initial free boundary. This first
theorem will be addressed more precisely in Sections 8, 9, and 10. We also tie together all of the
arguments into one place in Section 11.

Theorem 1.1. If F1 and F2 are uniformly elliptic and rotationally invariant in the Hessian variable,
G is Lipschitz and monotone (see the assumptions of Section 2.2), and f : Rd × [0, T ] → R and
Uf : Rd+1 × [0, T ]→ R are such that

∀ t ∈ [0, T ], Γ(t) = ∂{Uf (·, t) > 0} = graph(f(·, t)),
then,

(i) Uf is a viscosity solution of the free boundary evolution, (1.1), with appropriate boundary condi-
tions, if and only if f is a viscosity solution of the fractional parabolic equation, (1.2);

(ii) if additionally, graph(f(·, 0)) = ∂{Uf (·, 0)} enjoys a modulus of continuity, |f(x, 0)− f(y, 0)| ≤
ω(|x− y|), then for all t ∈ [0, T ] this modulus is preserved for f(·, t) (and hence ∂{Uf (·, t) > 0});

(iii) if graph(f(·, 0)) = ∂{Uf (·, 0)} enjoys a modulus of continuity, |f(x, 0)− f(y, 0)| ≤ ω(|x− y|),
then there exists a unique viscosity solution to both the respective parabolic equation and the free
boundary evolution, assuming the graph assumption for ∂{U > 0} listed above.

Remark 1.2. The precise definitions of viscosity solutions are given in Section 8 for the parabolic
nonlocal equation and Section 9 for the free boundary problem.

Remark 1.3. As mentioned above, the one-phase problem can be interpreted as taking F2 to only be
zero when U is identically zero. Another way to capture the one-phase problem from Theorem 1.1 is to
take G(∂+

n U, ∂
−
n U) = g(∂+

n U), which ignores whatever is the prescribed equation in the set {U > 0}C .

The main feature behind the results in Theorem 1.1 is the analysis of what could be called a non-
linear version of the Dirichlet-to-Neumann operator, but modified to suit the free boundary problems
like (1.1). This is the operator we called I, above, and we define it here. Assume that F satisfies
assumptions listed in Section 2.2, and that f ∈ C1,γ(Rd) with the property that f ≥ δ > 0. Then, for
the domain given by f , which we define as

Df = {(x, xd+1) ∈ Rd × R+ : 0 < xd+1 < f(x)}, (1.4)
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there is a unique solution, Uf , to the equation
F (D2Uf ,∇Uf ) = 0 in Df

Uf = 1 on Rd × {0}
Uf = 0 on graph(f).

(1.5)

This allows us to define an operator, I, via the (inward) normal derivative of Uf , which is given by

I(f, x) := ∂nUf (x, f(x)). (1.6)

One of the main results in our work that leads to Theorem 1.1 is the following property of I. Again,
as with Theorem 1.1, we state it informally here, and revisit it with more precise assumptions later,
in Sections 5, 7, and 11.

Theorem 1.4. If F is uniformly elliptic and rotationally invariant in the Hessian variable (see the
assumptions of Section 2.2), I is defined via (1.5) and (1.6), and γ ∈ (0, 1) is fixed, then there exists
γ′ with 0 < γ′ < γ so that

I :

(⋃
δ>0

C1,γ(Rd) ∩ {f : f ≥ δ > 0}

)
→ Cγ

′
(Rd), and I is locally Lipschitz.

Additionally, I enjoys the following representation for aij, cij, bij, and µij(dh) that are independent
of x, and that depend on the bounded set {f : f ≥ δ, ‖f‖C1,γ ≤ m}:

I(f, x) = min
i

max
j

{
aij + cijf(x) + bij · ∇f(x) +

∫
Rd

(f(x+ h)− f(x)− 1B1(h)∇f(x) · h)µij(dh)

}
.

Furthermore, there exists a C such that
∣∣aij∣∣ ≤ C, −C ≤ cij ≤ 0,

∣∣bij∣∣ ≤ C, and∫
Rd

min
(
|h|1+γ , 1

)
µij(dh) ≤ C and

∫
Rd\BR

µij(dh) ≤ Cω(R),

for some modulus, ω, with ω(R) → 0 as R → ∞. The constant, C, depends on the Lipschitz bound
for I over the corresponding subset of

(⋃
δ>0C

1,γ(Rd) ∩ {f : f ≥ δ > 0}
)
.

Remark 1.5. We want to emphasize that in most of our results, above and below, there is a technical
assumption that Fi must be rotationally invariant in the Hessian variable. The curious reader can see
its use in the proof of Theorem 5.13, but it is not clear if this was an artifact of our chosen method
or if it is a true obstacle to such representations of the free boundary problem.

Remark 1.6. We note that to properly study the parabolic equation (1.2), the most important part is
to understand the Lipschitz, comparison, and integro-differential properties of the map, I, defined in
(1.6). As the reader will see at the end of Section 7, all the desired properties then also carry over to
the operator

G(I(f)) ·
√

1 + |∇f |,

which is the one that appears in (1.2) and corresponds to the free boundary evolution.

Remark 1.7. In the interest of transparency, we would like to mention what is new and what is closer
to what is already known about the results that appear above.

• In principle, the free boundary existence and uniqueness results mentioned in Theorem 1.1 are
not surprising, and most experts would probably say they closely mirror the results on existence
and uniqueness found in [46]. However, to the best of our knowledge, even with such special
assumptions as the graph condition, we are not aware that the fully nonlinear nor the two-phase
cases have been written or appeared anywhere. Thus, this step is technically new, but maybe
not substantially new.
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• The preservation of a modulus of continuity for the free boundary again, is to the best of
our knowledge, new, but given the fact that it is really a consequence of the definition of
viscosity solutions, combined with the underlying translation invariance of the problem, one
could also suggest that this may follow in the Hele-Shaw case from some arguments similar
to [46]. However, this result seems to only appear when the modulus is a Lipschitz norm and
the flow is Hele-Shaw, which was proved in [27] (under a star-shaped assumption instead of a
graph assumption). Thus for the two-phase and the fully nonlinear one-phase cases, we believe
this part of the results are technically new.
• The Lipschitz property of the mapping, I, to the best of our knowledge is completely new. The

integro-differential formula in the min-max of Theorem 1.4 is new, even though previous works
had noted connections with operators similar to the 1/2-Laplacian (more discussion of this
appears in Section 4).
• The correspondence of the free boundary evolution with the viscosity solution of the parabolic

equation (1.2) is relatively new, and the closest result is that of two of the authors, where in
[25] they showed that certain blow-up limits of the free boundary will be viscosity solutions of
a parabolic equation. The novelty in our current work is to avoid the blow-up argument, and
work directly with the original free boundary as a fractional parabolic equation.

1.1. A note on the level-set formulation of (1.1). One way to see the connection between the
original free boundary evolution given by (1.1) and the nonlinear fractional parabolic equation in
(1.2) is by recognizing the flow as a level-set equation. Indeed, the graph assumption means that we
naturally have two different choices of defining functions for the boundary, ∂{U(·, t) > 0} = ∂Ω(t). Of
course, this is the zero level set of U , which is the obvious defining function. However, if we assume
that we have parametrized Ω(t) by some defining function, Φ(X, t), we have

∂Ω(t) = {Φ(·, t) = 0}.
Regardless of from where the prescribed evolution of Ω(t) originates, if one insists that the normal
velocity is V and the (outer!) normal vector is n, then it is not hard to check that the level set equation
becomes

0 = ∇Φ · (nV ) + ∂tΦ.

Of course, as a defining function of a level set, we have, depending upon whether or not Φ > 0 in Ω(t)
or Φ < 0 in Ω(t),

n = ± ∇Φ

|∇Φ|
,

and hence the flow reduces to

∂tΦ = ±V |∇Φ| .
In our case, to be consistent with the natural parametrization, we choose Φ > 0 in Ω(t), and hence a
second natural choice then becomes (where X = (x, xd+1))

Φ(X, t) = f(x, t)− xd+1.

Furthermore, we have chosen V = G(∂+
n Uf , ∂

−
n Uf ), and so given the definition of the operator I (and

correspondingly I+ and I−), we finally obtain

∂tf = G(I+(f), I−(f)) ·
√

1 + |∇f |2.

2. Some definitions and assumptions

2.1. Definitions.

Definition 2.1. The translation operator, τx, is defined, for a fixed x, acting on functions on Rd, as

τxu := u(·+ x).



Free boundary problems as nonlocal parabolic equations 5

Definition 2.2 (GCP). (Part 1) The global comparison property (GCP) for I : C1,γ(Rd) → C0(Rd)
requires that for all u, v ∈ C1,γ(Rd) such that u(x) ≤ v(x) for all x ∈ Rd and such that for some
x0, u(x0) = v(x0), then the operator I satisfies I(u, x0) ≤ I(v, x0). That is to say that I preserves
ordering of functions on Rd at any points where their graphs touch.

(Part 2) Analogously, we say that I has the GCP at x0 if the above property is only required to hold
for one fixed x0, instead of all possible x0.

Definition 2.3 (Extremal Operators). The second order (λ,Λ)-Pucci extremal operators are defined
as M− and M+, for a function, U that is second differentiable at X, via

M−(D2U,X) = min
λId≤B≤ΛId

(
tr(BD2U(X))

)
and M+(D2U,X) = max

λId≤B≤ΛId

(
tr(BD2U(X))

)
.

When {ei}i=1,...,d+1 are the eigenvalues of D2U(X), an equivalent representation is

M−(D2U,X) = Λ
∑
ei≤0

ei + λ
∑
ei>0

ei and M+(D2U,X) = λ
∑
ei≤0

ei + Λ
∑
ei>0

ei.

Definition 2.4 (Uniformly Elliptic). When F is linear, i.e. F (D2U,∇U) = tr(A(X)D2U(X)) +
B(X) · ∇U(X) we say that F is (λ,Λ)-uniformly elliptic if ‖B‖L∞ ≤ Λ and

λId ≤ A(X) ≤ ΛId for all X,

and when F is nonlinear, if for all U, V ∈ C2,

M−(D2U −D2V )− Λ|∇U −∇V | ≤ F (D2U,∇U)− F (D2V,∇V )

≤M+(D2U −D2V ) + Λ|∇U −∇V |.

Next, we recall some definitions from Clarke’s book on nonsmooth analysis, [29]. They are appro-
priately modified for our context.

Definition 2.5 (Upper Gradient). Assume that K is an open convex subset of C1,γ(Rd) and that
φ : K ⊂ C1,γ(Rd)→ R is Lipschitz. The upper gradient of φ at f ∈ K in the direction of g ∈ C1,γ, is
defined as

φ0(f ; g) := lim sup
t↘0

φ(f + tg)− φ(f)

t
.

This can be seen as a function φ0 : K × C1,γ → R.

Definition 2.6 (Subdifferential). Let φ be as in Definition 2.5. The generalized gradient, or as we

will say, Clarke differential of φ at f ∈ K is the subset of
(
C1,γ(Rd)

)∗
given by

∂φ(f) := {` ∈
(
C1,γ(Rd)

)∗
| ∀ ψ ∈ C1,γ(Rd), φ0(f ;ψ) ≥ 〈`, ψ〉}.

We will denote simply by [∂φ]K the convex hull of the union of ∂φ(f),

[∂φ]K := hull

⋃
f∈K

∂φ(f)

 .

Remark 2.7. We want to stress that [∂φ]K depends on the original set, K. This plays an essential
role in Sections 7 and 8.

2.2. Assumptions. We keep the following standing assumptions on Fi for i = 1, 2:

(a) there exists λ ≤ Λ such that Fi is uniformly elliptic in the sense of Definition 2.4;
(b) F (0, 0) = 0;
(c) for all p, F (A, p) is rotationally invariant in the A variable (the Hessian variable);

(d) G : (0,∞)2 → R, and for a.e. (a, b), λ0 ≤
∂

∂a
G(a, b) ≤ Λ0, λ0 ≤ −

∂

∂b
G(a, b) ≤ Λ0.
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2.3. Notation. Here we will collect some notation that is used in this work.

• F is an elliptic second order operator, described in Definition 2.4
• Upper case U will be functions Rd+1 → R, and lower case u will be functions Rd → R.
• similarly, we try to keep the convention that upper case letters, X ∈ Rd+1, and lower case

letters, x ∈ Rd.
• Df = {(x, xd+1) ∈ Rd × R+ : 0 < xd+1 < f(x)}
• Γf = graph(f), and in most cases, Γf = ∂{Uf > 0}.
• Γ0 = Rd × {0}
• ΓL = Rd × {L}, where L > 0.
• n is the inward normal vector to Df , along Γf , which in most cases is the inward normal vector

to {U > 0}.
• For X0 ∈ Γf ,

∂+
n U(X0) = lim

t→0+

U(X0 + tn(X0))− U(X0)

t
and ∂−n U(X0) = − lim

t→0+

U(X0 − tn(X0))− U(X0)

t
(note that in most cases, −tn(X0) ∈ {U < 0} and U(X0) = 0; ∂−n U is normalized to be non-
negative).
• The translation operator, τh, is given in Definition 2.1.
• C1,γ(Rd) = {f : Rd → R : ‖f‖L∞ + [f ]Cγ + ‖∇f‖L∞ + [∇f ]Cγ <∞}
• (equivalently)

C1,γ(Rd) = {f ∈ L∞(Rd) : sup
z∈Rd

sup
r>0

r−1−γ inf
P (x)=c+p·x : c∈R, p∈Rd

‖f − P‖L∞(Br(z)) <∞}

• Punctually C1,γ(x) is defined in Definition 5.2.
• For γ ∈ (0, 1), δ > 0, m > 0, the convex set, K(γ, δ,m) is defined as

K(γ, δ,m) := {f ∈ C1,γ(Rd) | f(x) ≥ δ ∀ x ∈ Rd, ‖f‖C1,γ(Rd) ≤ m}.

• K(γ, δ) =
⋃
m>0

K(γ, δ,m).

• K(δ) =
⋃

γ∈(0,1)

⋃
m>0

K(γ, δ,m).

• K∗(γ, δ,m) and K∗(γ, δ,m) appear after Definition 5.2, in equations (5.4), (5.5).

3. Three examples

Here, we mention three natural examples to which Theorems 1.1 and 1.4 will apply. The first two
examples are treated explicitly in this paper, and the third is closely related, but not explicitly treated.
We want to point out that although the equations that govern the pressure and free boundary may
be linear, the resulting nonlocal parabolic flow is fully nonlinear.

3.1. One phase Hele-Shaw on a half space. To every f : Rd → R which is continuous, non-
negative, bounded, and bounded away from zero we associate the domain

Df := {X = (x, xd+1) ∈ Rd+1 | 0 < xd+1 < f(x)},

as well as the hypersurface

Γf := {X = (x, xd+1) ∈ Rd+1 | xd+1 = f(x)}.

Let Uf : Df → R be the unique bounded solution to the Dirichlet problem
∆U = 0 in Df ,

U = 1 on {xd+1 = 0},
U = 0 on Γf .
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Then, with n denoting the unit normal to Γf pointing towards Df , define

I(f, x) := (∂+
n Uf )(x, f(x)).

For sufficiently smooth f , the property to be a solution of

∂tf = I(f, x) ·
√

1 + |∇f |2, on Rd × [0, T ],

is equivalent to U = Uf being a solution of the free boundary problem
∆U = 0 in {U > 0},
U = 1 along {xd+1 = 0},
V = ∂+

n U along ∂{U > 0}.

This is the one-phase Hele-Shaw problem on the upper half space, and it is not hard to check that the
map, I, enjoys the GCP. The operator I is easily seen to be translation invariant, and we emphasize
that it is also nonlinear and nonlocal. The existence/comparison results in Sections 8-9 and regularity
result in Section 10 apply to this problem.

3.2. Two-phase problems along an infinite strip. In our framework, dealing with the two-phase
problem is nearly at the same level of complexity and difficulty as the one-phase problem. We fix an
upper boundary, L > 0, and a globally Lipschitz function

G : (0,∞)2 → R,

which satisfies a monotonicity assumption,

λ0 ≤
∂

∂a
G(a, b) ≤ Λ0, λ0 ≤ −

∂

∂b
G(a, b) ≤ Λ0,

for example, G(a, b) = a2 − b2. This function, G, will give the normal velocity of the flow, depending
upon ∂±n U along ∂{U > 0}.

Now, to every f : Rd → R which is continuous, 0 ≤ f ≤ L, and bounded away from zero and L, we
associate the two domains (for {U > 0} and {U < 0})

D+
f = {(x, xd+1) | 0 < xd+1 < f(x)},

D−f = {(x, xd+1) | f(x) < xd+1 < L},

and we also associate to such f the same hypersurface, Γf , that is defined in the previous example.

Let U+
f : D+

f → R and U−f : D−f → R be respectively the unique bounded solution to the Dirichlet
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problem 
∆U± = 0 in D±f
U± = ±1 on {xd+1 = 0} (resp. {xd+1 = L}),
U± = 0 on Γf .

Then, we define H(f, x) by

H(f, x) := G(∂+
n U(x, f(x)), ∂−n U(x, f(x))).

As in the previous example, as long as f is sufficiently smooth, solving

∂tf = H(f, x) ·
√

1 + |∇f |2, on Rd × [0, T ],

is equivalent to U = Uf solving the two-phase free boundary problem
∆U = 0 in {U 6= 0},
U = 1 on {xd+1 = 0},
U = −1 on {xd+1 = L},
V = G(∂+

n U, ∂
−
n U) on ∂{U > 0}.

Again, the resulting operator H enjoys the GCP, is translation invariant, nonlinear, nonlocal, and the
existence/comparison results in Sections 8-9 and regularity propagation result in Section 10 apply.
Furthermore, as in Section 6, the reader will see that H is just a combination of two operators like
the I from the first example, but interacting through the function, G.

3.3. Prandtl-Batchelor as a non-linear integro-differential equation on the sphere. This
example illustrates how the ideas in this paper could possibly be applied to free boundaries which
are not given by a graph over Rd, but rather a graph over a sphere. The Prandtl-Batchelor is a two
dimensional model in fluid mechanics that models a vortex patch occupying a convex region, the patch
being surrounded by a steady flow (see [1], [7], [8], [17]). The interface of the vortex patch is what
plays the role of the free boundary. Although not covered directly by our results, it is close to them in
spirit, and most of the tools we use can be applied to the situation of operators that act on functions
over a reference manifold.

In the Prandtl-Batchelor flow we denote the stream function of the flow by U , and it satisfies the
following 

∆U = 0 in {U > 0},
∆U = 1 in {U < 0},
|∂+
n U |2 − |∂−n U |2 = 1 on ∂{U > 0}.
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The set {U < 0} corresponds to the vortex patch.

This problem can be recast as a (steady state) non-linear integro-differential equation on the sphere
(or circle). To see this, consider the set of continuous functions f : Sd−1 → R such that

0 < f(x) ≤ f(x) in Sd−1,

where f is a given positive, continuous function. For each such f , we define the sets

D−f := {x ∈ Rd | x = re where e ∈ Sd−1 and 0 ≤ r < f(e)},

D+
f := D−

f
\D−f ,

furthermore, we define functions U±f : D±f → R, each given as the unique solution to the Dirichlet

problem

{
∆U− = 1 in D−f ,

U− = 0 on ∂D−f ,

and


∆U+ = 0 in D+

f ,

U+ = 0 on ∂D−f ,

U+ = 1 on ∂Df̄ .

Then, we define an operator P : C2(Sd−1)→ C0(Sd−1) by

P (f, x) := |∂+
n U

+
f (x, f(x))|2 − |∂−n U−f (x, f(x))|2
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The operator P (f, x) admits the GCP. Moreover, for sufficiently smooth f , solving

P (f, x) = 1 in x ∈ Sd−1,

means that the (radial) graph of f is the boundary of a vortex patch in a Prandtl-Batchelor flow, and
that U±f gives the positive and negative phases of the stream function. We note that thanks to the

invariance of the Laplacian and the boundary conditions by rotations of the domain, the operator, P ,
will also be invariant under the action of rotations on C2(Sd−1). This rotational invariance would play
the same role in the min-max and existence-uniqueness theory as does the translation invariance that
we use in Sections 7, 8, 10.

4. Background

As mentioned above, our goal is to show how some free boundary problems correspond to parabolic
integro-differential equations for a scalar over a submanifold. In some aspects, this observation is not
new, but in other aspects it does seem new– we will try to put it in the context of some existing results.
For the purposes of the following discussion we will focus solely on free boundary problems involving
one scalar and one hypersurface. This, of course, is not the case for all free boundary problems, but
will be so for all of the free boundary problems we consider here. We will also limit our discussion to
those free boundary problems that non-stationary.

Examples of free boundary problems include a large class of fluid problems such as cavitation [9]
obstacle problems [15, 52], the porous medium equation [13, 59], the Muskat problem [56], problems
with surface tension [51], singular perturbation problems [18], Prandtl-Batchelor flows [1], [7], [8], [17],
sharp interface limits of phase field models [2, 19, 20], and more.

Many of these problems admit a variational formulation, often in terms of variational inequalities
(see for instance Duvaut and Lions [35] or Kinderlehrer and Stampacchia [48] for further discussion of
such problems). In many situations, not necessarily mutually exclusive with the former, the problem
has a comparison principle at the level of the scalar field. Such a comparison principle has made it
possible to define viscosity solutions, and the origins of this seem to be in the work of Caffarelli for
the stationary two-phase problem in [14]. This notion of solution was then used for two-phase Stefan
problems in Athanasopoulos-Caffarelli-Salsa in [5], and was later adapted to the Porous Medium
equation in work of Caffarelli-Vazquez [13], as well as for the Hele-Shaw problem in work of Kim [46]
and the two-phase Stefan problem of Kim-Pozar [47]. In particular, the work of [46] shows existence,
uniqueness, and a comparison principle for viscosity solutions for the one phase Hele-Shaw problems.
Regularity for these free boundary problems was studied, for Stefan, in [5], and for Hele-Shaw in [27],
[28], [45]. It is interesting to point out that although in a slightly different fashion than what we treat
here, there was an occurrence of something resembling an integro-differential equation in [27]. In [27,
Lemma 10.4], for the one-phase Hele-Shaw flow, they establish that (using our notation above) when
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∂{U > 0} is Lipschitz with a small enough Lipschitz norm, U satisfies an equation of the form

∂tU =

∫
∂{U>0}

|∇U(x, t)|2 k(x, t; y)dσ(y);

where k is the Poisson kernel for ∂{U > 0}, and σ is the surface measure on ∂{U > 0}.
There are free boundary problems where the scalar is constant (say, zero) along the free boundary.

The free boundary is then a level set of the solution of a PDE, and accordingly, statements about the
free boundary can be reduced to statements about the scalar function itself; such as in the Porous
Medium equation or the Hele-Shaw equation. Matters are different in problems where the free bound-
ary is not a level set of the scalar, such as the Muskat problem, and where the above approach is not as
directly applicable. Accordingly, the emphasis does not reside exclusively on the scalar or underlying
potential function, but on the free boundary itself, and on how its shape determines the scalar and
then its evolution.

A representative example of this latter situation can be found in work of Cordoba and Gancedo for
the Muskat problem. In [31], the authors use contour-integration to describe the evolution equation
for the interface for the Muskat problem. This requires in particular that the interface at time t is
given by the graph of a function f(x, t) defined over Rd. Then, the scalar f is shown to solve the
integro-differerential equation [31, Section 2, Equation 13]

∂tf(x, t) =
ρ2 − ρ1

4π
P.V.

∫
R2

(∇f(x, t)−∇f(x− y, t)) · y
(|y|2 + (f(x, t)− f(x− y, t)))

2
3

dy.

Here, ρ1 and ρ2 represent the respective (constant) densities of each of the fluids. As observed in [31,
Section 2], the linearization of the above equation at a constant f is the fractional heat equation.

The Muskat problem, also known as the Muskat-Leibenzon problem, describes the interface bound-
ing a fluid, see [56] for a thorough discussion and further references. The Muskat problem is an accurate
model for the two-phase regime of a “Hele-Shaw cell”, and is accordingly known also as the two-phase
Hele-Shaw problem. In this problem the fluid is assumed to be irrotational, but the respective pres-
sure is no longer assumed to be constant along the free boundary. In [4] Ambrose obtained local
well-posedness for the Muskat problem with initial data in H2 that satisfies the Rayleigh-Taylor con-
dition. Siegel, Caflisch, and Howison [56] studied global solutions with periodic boundary conditions
and initial datum close to equilibrium.

The approach in [31] was used in several subsequent results, among which we highlight a few.
Constantin et al. [30] showed the existence of global weak solutions which are globally Lipschitz in
space as long as the initial data had a Lipschitz constant strictly smaller than 1. In contrast, Castro et
al [22, Theorem 2.1] showed the 2D Muskat problem may develop a singularity (in C1) in finite time,
even if the initial data is smooth. More recently, Cameron [21], studied a closely related problem,
using integro-differential methods combined with the modulus preservation technique of [49].

An approach amenable to many problems involves changing variables, either to Lagrangian coordi-
nates (for fluid problems) or through the Hanzawa transform, pulling back the free boundary onto a
fixed, reference interface, and writing the free boundary problem as a system on a fixed domain. The
book of Prüss and Simonett [54] has a thorough presentation of this approach in combination with
Lp-maximal regularity. The Hanzawa transform, for instance, entails fixing a reference free boundary
Γ0, and considering interfaces giving as a normal graph over Γ0

Γ(t) = {x+ h(x, t)νΓ0 | x ∈ Γ0}.

The function h : Γ0 × [0, T ] → R is known as a height function. The PDE in “the bulk” of the new
domain will have coefficients determined by the change of variables, and the boundary conditions on
this new domain are represented by a coupling between h and the fields along the fixed boundary [54, p.
33]). Having set up the problem in the fixed domain one can pose this as a non-linear evolution problem
in some properly chosen Banach space. The problem can be written, under the right circumstances, as
a non-linear perturbation of a linear problem where the linear operator is elliptic. Elliptic here meaning
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in terms of a Fourier symbol, and operators of order higher than 2 are allowed (this, in particular makes
it possible to treat problems with surface tension). With this approach it is possible to prove short
time existence for smooth initial data, global existence near equilibrium, stability of equilibria, and
more. This is done for a large class of problems, including two-phase Stefan problems [53], problems
involving surface tension [36], and problems where the underlying fields are not necessarily scalar. For
works making use of a Lagrangian approach to analyze free boundary problems, we mention work of
Hadzic and Shkoller [39] where they obtain global stability for the classical Stefan problem, and Cheng,
Coutand, and Shkoller [26] where the authors study the Hele-Shaw problem with surface tension.

We see there is a vast literature where free boundary problems are treated by putting the focus on
the free boundary in one way or another. Either by assuming it is given by a global graph, and using
contour integration to represent the free boundary condition as non-linear integro-differential equation
(as done in the Muskat problem) or by representing it as the normal graph over a reference interface
(e.g. using the Hanzawa transform) and pulling this back to a reference configuration to obtain a
coupled system in a fixed domain. Finally, we note a result that is similar to our own in both spirit
and results: using a blow up argument and a change of variables, two of the authors in [25] were able
to deduce some regularity results of Hele-Shaw flow by invoking recent results for integro-differential
equations.

The approach in this current paper shares features with both of these previous approaches– there is
a nontrivial overlap as they all involve a “height function” h to represent the free boundary. However,
the work we present here differs a bit in the sense that it is based on the structure of the underlying
operators that is enforced by the comparison principle. The result is a description of (certain classes of)
problems in terms of a single a scalar solving an equation with non-linear integro-differential operator
reminiscent of the Dirichlet to Neumann map. This operator satisfies the global comparison principle
so it can be studied via viscosity solutions methods for nonlocal equations and hence also opens up
the possibility to subsequently apply non-divergence regularity results obtained in recent years.

5. The free boundary operator

This section is dedicated to a study of something that we call a “free boundary” operator, which
is defined in (1.5) and (1.6). Eventually we will prove many properties of I, including its Lipschitz

nature as a function from special convex subsets of C0,1 to Cγ
′
. The results of this section lead in two

different, but related, directions with more or less common goals. The first is to be able to establish
a min-max integro-differential representation for I and subsequently derive some basic properties of
the linear operators that make up this min-max (e.g. no second order terms, and negative zero-order
terms). The second direction is to use the Lipschitz nature of I, with some special functions, to derive
a comparison theorem for sub and super solutions of the fractional parabolic problem, (1.2). Both of
these inquiries are useful in their own right, and of course, they overlap at the stage of the comparison
theorem. They will be developed in the sequels, Sections 7 and 8.

5.1. Setup. As above, we assume that F is uniformly elliptic and satisfies standard assumptions for
existence and uniqueness of viscosity solutions, listed in section 2.2.

Given an f ∈ C1,γ(Rd) with inf f > 0 we assign Uf , the unique viscosity solution to
F (D2Uf ,∇Uf ) = 0 in Df ,

Uf = 0 on Γf ,

Uf = 1 on Γ0.

(5.1)

We recall that for shorthand purposes, in this section, Γf = graph(f) and Γ0 = Rd × {0} (Section
2.3 has this and other notations). We mention some sufficient conditions for the existence of such a
Uf below. We note that, thanks to the boundary gradient estimates in [58, Remark 3.2], for some

γ′ ∈ (0, γ], this Uf will enjoy a global in Df estimate, Uf ∈ C1,γ′(Df ). Thus, we may define the
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operator

I(f, x) := ∂nUf (x, f(x)), (equivalently, I(f, x) = |∇Uf (x, f(x))|). (5.2)

We see that for this γ′, we have

I : C1,γ(Rd) ∩ {f : inf f > 0} → Cγ
′
(Rd).

The study of this operator will be our chief concern. It turns out that there are more relaxed situations
in which I is well defined, and we build these results below. They will use a generalization of semi-
concavity that is well known in the field of optimal transport (usually referred to as c-convexity), and
a special case is the next definition.

Definition 5.1 (C1,γ-semi-concave). Let γ ∈ (0, 1] and m > 0. A Lipschitz function f : Rd → R will
be said to be C1,γ-semi-concave with constant m if there is a real valued function, r(y), such that

f(x) = inf
y∈Rd
{r(y) +m|x− y|1+γ}.

A function f is said to be C1,γ-semi-convex with constant m if (−f) is C1,γ-semi-concave with constant
m.

We also need the notion of a function to be pointwise “C1,γ”.

Definition 5.2 (Pointwise C1,γ). As above, let γ ∈ (0, 1] and m > 0 be fixed. We say that f : Rd → R
is pointwise m-C1,γ at x0, denoted f ∈ m-C1,γ(x0), if ∇f(x0) exists, there exists r > 0, such that

|f(x0)| ≤ m, |∇f(x0)| ≤ m,

and ∀ x ∈ Br(x0), |f(x)− f(x0)−∇f(x0) · (x− x0)| ≤ m |x− x0|1+γ .

For m, δ > 0 and γ ∈ (0, 1), we consider the convex set of functions

K(γ, δ,m) := {f ∈ C1,γ(Rd) | f(x) > δ ∀ x ∈ Rd, ‖f‖C1,γ(Rd) < m}, (5.3)

as well as a respective convex sets of “semi-concave/convex” functions, which are larger,

K∗(γ, δ,m) := {f ∈ C0,1(Rd) | f(x) > δ ∀ x ∈ Rd, f is C1,γ-semi-concave with constant m }, (5.4)

K∗(γ, δ,m) := {f ∈ C0,1(Rd) | f(x) > δ ∀ x ∈ Rd, f is C1,γ-semi-convex with constant m }. (5.5)

It is clear that we have the inclusion

K(γ, δ,m) ⊂ K∗(γ, δ,m) ∩ K∗(γ, δ,m).

Our goal, as noted above, is that we intend to use I to define (degenerate) parabolic equations, and
to show a comparison theorem for viscosity solutions of these equations. This means that there are,
more or less, three primary concerns:

(1) For a fixed x ∈ Rd, for which functions, f , is I(f, x) classically defined? Certainly, we will
require that there is a δ > 0 so that f ≥ δ. Furthermore, it is not too hard to show, and we do
below, that I(f, x) is well defined if also for some r > 0, f ∈ C0,1(Rd)∩C1,γ(Br(x)). However,
we prefer to have a slightly weaker situation, and indeed, we are able to show that I(f, x) is
still well defined when f ∈ C0,1(Rd) ∩

(
m-C1,γ(x)

)
.

(2) Over which collection of functions does I enjoy the GCP? (The GCP appears in Definition
2.2.)

(3) Over which set is the mapping I Lipschitz? We will show that I is locally Lipschitz on the
convex sets given by K∗(γ, δ,m) above, and that the Lipschitz norm grows as either δ decreases
or m increases. (As a corollary, I will be locally Lipschitz on K(γ, δ,m).)
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5.2. Basic properties. We have defined I(f, x) in (5.2) for functions which are globally of class
C1,γ for some γ ∈ (0, 1). We now carefully check the existence and uniqueness for Uf as well as the
well-posedness of I(f, x) in some less restrictive situations. Eventually, we show that I is well defined
whenever f is either Lipchitz and locally C1,γ in a neighborhood of the point of evaluation, or when
f is Lipschitz and C1,γ-semi-concave.

Proposition 5.3. If f ∈ C0,1(Rd) and f ≥ δ, then there exists a unique Uf ∈ C(Df ) that is the
viscosity solution of (5.1) and continuously attains its boundary values.

Proof of Proposition 5.3. This proposition is more or less standard for viscosity solutions, but we were
unable to find a standard reference that contained the particular situation stated above. Thus, we
have included some of the main details.

So long as we can construct a barrier for Uf to force it to attain its boundary values on Γf con-
tinuously, we will have the existence and uniqueness from the results by, e.g. Ishii [42]. This is a
consequence of the fact that the Perron Method will produce a solution in the interior, and so we may
assume that Uf is already defined in Df . We just focus on the boundary values.

We first note that the fact that Γ0 = Rd × {0} is flat (hence C2), the existence of lower and upper
barriers attaining the value 1 on Γ0 is standard. We instead focus our attention on barriers at the
upper boundary, Γf .

The Lipschitz nature of f gives Df an exterior cone condition, and so it is possible to construct
an upper barrier for (5.1) (we note that the constant, zero, function serves as a lower barrier). Let
X0 = (x0, f(x0)) ∈ Γf be fixed. We will construct a function ψX0 that serves as an upper barrier for
Uf at X0. Let φ be a continuous function such that

φ(X0) = 0, φ ≥ 0, φ(Y ) ≥ 1 for Y ∈
(
∂Qδ(X0) ∩Df

)
,

where we use Qδ(X0) to be the cube of side length, δ, centered at X0. We note that since Df enjoys
the exterior cone condition, then so does Qδ(X0)

⋂
Df . Thus, by [10, Corollary 3.10], there exists a

unique solution, ψX0 ∈ C2,γ(Qδ(X0)
⋂
Df )

⋂
C(Qδ(X0)

⋂
Df ), to the extremal equation,{

M+(D2ψX0) + |∇ψX0 | = 0 in Qδ(X0)
⋂
Df

ψX0 = φ on ∂ (Qδ(X0)
⋂
Df ) .

From the definition of uniform ellipticity, it follows that this ψX0 is a viscosity supersolution of
F (D2U,∇U) = 0 in the domain Qδ(X0)

⋂
Df .

Because we know that Uf ≤ 1 in Df and Uf = 0 on Γf , we see that Uf ≤ ψ on ∂(Qδ(X0)
⋂
Df ).

Thus, by comparison, we see that

0 ≤ Uf (X0) ≤ ψ(X0) = 0.

Hence, Uf (X0) = 0. Since X0 was generic, we conclude that such a Uf exists and continuously attains
Uf = 0 on Γf .

�

Proposition 5.4. If f, g ∈ C0,1(Rd), f ≥ δ, g ≥ δ, and f ≤ g in Rd, then for Uf , Ug solving (5.1),

Uf ≤ Ug in Df .

Proof of Proposition 5.4. First, we note that f ≤ g implies that Df ⊂ Dg. Furthermore, since f = 0
on Γf and since g ≥ 0 in Df , we see that Ug is a supersolution of (5.1) for f . Hence, Uf ≤ Ug is a
direct application of the comparison theorem for elliptic equations in [42].

�

Proposition 5.5. Let f : Rd → R be a bounded, globally Lipschitz function such that f ≥ δ in Rd
for some δ > 0, and let x0 ∈ Rd. If f is C1,γ(Br(x0)), for some fixed r ∈ (0, 1) then I(f, x0) is well
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defined. Moreover, there is a constant C, depending on d,Λ, λ and the C1,γ(Br(x0)) norm of f , such
that

|I(f, x0)| ≤ Cr−1.

Proof. The assumptions on f have already been shown in Proposition 5.3 to give the existence and
uniqueness of Uf . In particular, Uf satisfies in the viscosity sense

F (D2Uf ,∇Uf ) = 0 in Df ∩Bd+1
r ((x0, f(x0))).

Since ∂Df is of class C1,γ , from [58, Remark 3.2] it follows that Uf is of class C1,γ′ in the smaller

domain Df ∩Bd+1
r
2

((x0, f(x0))), with the estimate

‖∇Uf‖L∞(Df∩Bd+1
r
2

((x0,f(x0)))) ≤ Cr
−1‖Uf‖L∞(Df ) ≤ Cr−1.

�

Lemma 5.6. Assume that x0 ∈ Rd, δ > 0, and r > 0 are fixed. The map, I, has the global comparison
property based at x0 (Definition 2.2) for functions, f, g that satisfy

f, g ∈
(
C0,1(Rd)

⋂
C1,γ(Br(x0))

⋂
{h : Rd → R : h ≥ δ}

)
.

Consequently I also enjoys the GCP for functions in K(γ, δ) =
⋃
mK(γ, δ,m).

Proof. Let f, g ∈ C0,1(Rd)
⋂
C1,γ(Br(x0)) and x0 ∈ Rd be such that

f(x) ≤ g(x) ∀ x ∈ Rd, f(x0) = g(x0).

It is immediate that

Df ⊂ Dg, and X0 := (x0, f(x0)) = (x0, g(x0)) ∈ Γf ∩ Γg.

Now, since the boundary values of Ug are nonnegative, the maximum principle shows that

Ug ≥ 0 in Dg.

In particular, since Γf ⊂ Df , we have Ug ≥ 0 on Γf . Thus, Ug ≥ Uf on the boundary of Df . Then,
from the comparison principle, it follows that

Ug ≥ Uf in Df .

As both functions vanish at X0, we conclude that at X0

|∇Ug| ≥ |∇Uf |,

in other words, I(f, x0) ≤ I(g, x0), as we wanted.
�

The next proposition says the translation invariance of our setup implies, as one would expect, that
the operator I itself is translation invariant.

Proposition 5.7. For each γ ∈ (0,∞) and δ > 0, I : K(γ, δ) → C0 is translation invariant; i.e. for
f given, then for any h ∈ Rd that is fixed, we have

∀ x ∈ Rd, [τhI(f)](x) = I(τhf, x).

Proof. For h ∈ Rd, fixed, let us extend the translation operator, τh, to act on functions on Rd+1 as

W : Rd+1 → R, (x, x′) ∈ Rd+1, τhW (x, x′) := W (x+ h, x′).

The proposition will follow immediately from the observation

τhUf = Uτhf ,
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which itself is a consequence of the fact that the operator, F , and the lower boundary of Df are
translation invariant. Indeed, if we define W = τhUf , we see that

F (D2W (x, x′),∇W (x, x′)) = 0, whenever (x+ h, x′) ∈ Df ;

and furthermore,

W (x, f(x+ h)) = Uf (x+ h, f(x+ h)) = 0 and W (x, 0) = Uf (x, 0) = 0.

Hence W solves (5.1) in the domain Dτhf . By the uniqueness of solutions of (5.1), we see that we have

τhUf = W = Uτhf .

Since the operator ∂n commutes with τh, we conclude that

τh(∂nUf )(x) = ∂n(τhUf )(x) = ∂nUτhf (x),

whence

τh[I(f)](x) = I(τhf, x).

�

The next two propositions say respectively that Uf is monotone increasing in f , and that if f and
g are close in L∞, then Uf and Ug are also close in L∞ in their common domain.

Proposition 5.8. There is a constant C = C(d, λ,Λ, δ, γ,m) such that for all f ∈ K∗(γ, δ,m) ∩
C0,1(Rd),

∀ (x, xd+1) ∈ Df , Uf (x, xd+1) ≤ C(f(x)− xd+1).

Furthermore,

∇Uf ∈ L∞(Df ) and 0 ≤ ∂nUf (x, f(x)) ≤ C, whenever ∂nUf exists.

Proof of Proposition 5.8. Assume that x0 is fixed. Since f is C1,γ-semi-concave, there exists a ψ ∈
C1,γ(Rd) so that f ≤ ψ and f(x0) = ψ(x0), and ‖ψ‖C1,γ depends only on δ and m. Thus, Df ⊂ Dψ.

Furthermore, we know already, from [58, Remark 3.2] that there is some γ′ so that Uψ ∈ C1,γ′(Dψ). In

particular, Uψ is globally Lipschitz in Dψ. Finally, because of the ordering of f ≤ ψ and f(x0) = ψ(x0),
we see that both Uf ≤ Uψ (from Proposition 5.4) and 0 ≤ ∂nUf (x0, f(x0)) ≤ ∂nUψ(x0, ψ(x0)). The
C1,γ nature of ψ that depends only on δ and m means that the Lipschitz norm of Uψ depends only
on d, λ, Λ, δ, γ, and m. Since this Lipschitz property of Uψ implies the result of the lemma with Uf
replaced by Uψ, we conclude by the previously noted ordering of Uf ≤ Uψ, that the outcome of the
lemma is valid for Uf as well. �

Proposition 5.9. There is a constant C = C(d, λ,Λ, δ, γ,m) such that if f, g ∈ K∗(γ, δ,m), then

‖Uf − Ug‖L∞(Df∩Dg) ≤ C‖f − g‖L∞(Rd).

Proof. Let us show there is a C = C(λ,Λ, δ, γ,m) such that if f ∈ K∗(δ, γ,m) and s > 0, then

Uf+s ≤ Uf + Cs in Df . (5.6)

Indeed, by Proposition 5.8

Uf+s(x, xd+1) ≤ C(f(x) + s− xd+1)+ ∀ (x, xd+1) ∈ Df+s,

In particular, Uf+s(x, f(x)) ≤ Cs for every x ∈ Rd, which is the same as

Uf+s ≤ Cs on Γf .

Then, if Ũ := Uf + Cs with this same C, we have

Uf+s ≤ Ũ on ∂Df .
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Furthermore, Ũ is a viscosity solution of F (D2U,∇U) = 0 in Df , so by the comparison principle,

Uf+s ≤ Ũ everywhere in Df , and (5.6) is proved. Now, given a second function g ∈ K∗(δ, γ,m), let
s = ‖f − g‖∞, so that

g ≤ f + s.

Then, by Proposition 5.4 we have Ug ≤ Uf+s in Dg. Applying (5.6), it follows that

Ug ≤ Uf + Cs in Dg.

Arguing in the exact same manner but reversing the roles of f and g, we conclude that (with the same
constant C as before)

Uf ≤ Ug + Cs in Df ,

and this proves the proposition. �

In the next proposition, we state (with an abbreviated proof) a basic estimate for a one parameter
family of barrier functions {Hs}s>0.

Proposition 5.10. Fix w ∈ K(γ, δ,m) and s ∈ (0,∞). Let Hs : Dw → R be the unique viscosity
solution of 

F (D2Hs,∇Hs) = 0 in Dw,

Hs = 0 on Γw,

Hs = s on Γ0.

Then, for some universal γ′ ∈ (0, γ] and a constant C = C(d, λ,Λ, γ, δ,m), we have for X0 ∈ Γw and
X ∈ Dw

|Hs(X)− (∇Hs(X0), X −X0)| ≤ Cs|X −X0|1+γ′ ,

C−1s ≤ |∇Hs(X0)| ≤ Cs.

Moreover, there is a constant C such that

|Hs1(X)−Hs2(X)| ≤ C|s1 − s2|d(X,Γw).

Proof. We just provide a small sketch of the details. The first two claims are immediate from the C1,γ′

regularity of solutions in the domain, Dw, also using lower and upper barriers to bound the gradient
along Γw for the second claim. The lower bound on |∇Hs| uses the Hopf principle for fully nonlinear
equations.

The third assertion follows from the fact that, if we assume that s1 ≥ s2, then we have 0 ≤
Hs1 −Hs2 ≤ ψup, where ψup is a barrier function that solves

M+(D2ψup) + Λ|∇ψup| = 0 with ψup = s1 − s2 on Γ0, and ψup = 0 on Γw.

Furthermore, standard regularity theory, e.g. [58], shows that ψup ∈ C0,1(Dw), with

0 ≤ ψup ≤ s1 − s2, and |∇ψup| ≤ C‖ψup‖L∞ .

The claim follows by using the barrier up to the boundary at Γw.
�

The following Lemma follows an argument about the behavior of harmonic functions near regular
points of their boundary. Here we adapt the details from, e.g. [11, Lemma 11.17].

Lemma 5.11. Assume f is such that inf f > 0 and f is differentiable at x0, and furthermore that f
satisfies for some γ ∈ (0, 1) and C > 0

|f(x)− f(x0)− (∇f(x0), x− x0)| ≤ C|x− x0|1+γ .
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Then, the function Uf is differentiable at X0 = (x0, f(x0)), in the sense that for some α > 0

Uf (X) = α(n(X0), X −X0) + o(|X −X0|),

as X → X0 non-tangentially in Df . Here n(X0) denotes the inner normal to Df at X0.

Proof. Let δ = inf f > 0. Consider the function defined as

w(x) = ρ0

(
f(x0) + (∇f(x0), x− x0)− C|x− x0|1+γ

)
,

for x close to x0, where ρ0 denotes a smooth, monotone function of one variable such that

ρ0(t) = t for t ≥ δ,
ρ0(t) ≤ δ for t ≤ δ,
ρ0(t) = δ/2 for t ≤ δ/2.

Then, it is clear that w ∈ K(γ, δ/2,m′) for some m′ = m′(γ, δ, C). Moreover, from the assumption on
f (that f(x) ≥ f(x0) + (∇f(x0), x−x0)−C|x−x0|1+γ), we see that w(x0) = f(x0) and w ≤ f . Thus,

Dw ⊂ Df and X0 ∈ ∂Dw ∩Df .

Let Hs(X) be as in Proposition 5.10, for the domain given by Dw. For k ∈ N sufficiently large (so
that 2−k ≤ δ) we define

αk = sup{s | Uf ≥ Hs in B2−k(X0) ∩Dw}.

It is clear that the sequence αk is non-decreasing with respect to k. Therefore, there is some real
number α∗ such that α∗ = limαk or else Uf has superlinear growth at X0. The latter option is
impossible, since Uf is Lipschitz at X0; seen by using a C1,γ function, ψ, that touches f from above
at x0 and arguing as in Proposition 5.8.

Let {Xm}m be any sequence converging to X0 in Dw, and let us write

Uf (Xm)−Hα∗(Xm) = Uf (Xm)−Hαk(Xm) + (Hαk(Xm)−Hα∗(Xm)),

for any k, and let km be defined by the inequalities

2−km−2 ≤ rm < 2−km−1, rm := |Xm −X0|.
Then, for every m we have

Uf (Xm)−Hα∗(Xm) ≥ Hαk(Xm)−Hα∗(Xm).

On the other hand, thanks to Proposition 5.10, there is C > 0 such that

|Hαk(Xm)−Hα∗(Xm)| ≤ C|αk − α∗| · |Xm −X0|.
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We know that α∗ − αkm → 0 as m → ∞, so the right hand side is o(|Xm −X0|). Since the sequence
Xm was arbitrary, we have proved that

Uf (X) ≥ Hα∗(X) + o(|X −X0|), X ∈ Dw.

Thus, using Proposition 5.10, we can establish a further characterization of α∗, which is

α∗ = sup
{
s | Uf (X) ≥ Hs(X) + o(|X −X0|), as X → X0 non-tangentially

}
.

Let us show that in fact

Uf (X) = Hα∗(X) + o(|X −X0|), as X → X0 non-tangentially. (5.7)

We argue by contradiction. If (5.7) does not hold, there is a sequence Xm ∈ Dw converging non-
tangentially to X0 along which Uf −Hα∗ is larger than a quantity comparable to the distance to X0.
In other words, there is some θ > 0 such that

Xm → X0, |Xm −X0| ≥ θ|X ′m −X0|, Xm ∈ Dw,

(X ′m is the projection of Xm onto the tangent hyperplane to Γw at X0) and at the same time

Uf (Xm) ≥ Hα∗(Xm) + β|Xm −X0|,
for some β > 0 independent of m. To take advantage of this, let us define for k ∈ N the function

Wk(X) := Uf (X)−Hαk(X), for X ∈ Dw \Dw−r0 .

Since αk ≤ α∗ for all k, we have

Wk(Xm) ≥ β|Xm −X0| and Wk ≥ 0 in B2−k(X0) ∩Dw;

furthermore, Wk, satisfies (in the viscosity sense)

M+(D2Wk) + Λ|∇Wk| ≥ −C1,

M−(D2Wk)− Λ|∇Wk| ≤ C1.

Here we make use of the non-tangential convergence of the sequence: there is a c1 > 0 such that

Bc1rm(Xm) ⊂ B2−km (X0).

Applying the Harnack inequality (e.g. a rescaled statement of [16, Theorem 4.3] or [60, Theorem 4.18],
which includes the gradient term) it follows that (for some β0 > 0)

Wkm(X) ≥ β0rm in B 1
2
c1rm

(Xm) ∩Dw.

This together with Wkm ≥ 0 in B 1
2
c1rm

(Xm)∩Dw, guarantees (via a standard barrier argument) that

Wkm(X) ≥ c2β0d(x, ∂Dw) in B2−km (X0) ∩Dw,
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for some constant c2 = c2(d, λ,Λ, γ, C). In terms of Uf , this says that

Uf (X) ≥ Hαkm
(X) + c2β0d(X, ∂Dw) in B2−km (X0) ∩Dw.

On the other hand, by Proposition 5.10,

Hα(X)−Hαkm
(X) ≤ |α− αkm |d(X, ∂Dw).

Therefore, choosing some α > αkm sufficiently close to αkm (i.e. |α − αkm | ≤ c2β0) and α > α∗, we
have

Uf (X) ≥ Hα(X) in B2−km (X0) ∩Dw,

which is impossible because α∗ was the supremum over all such α. Therefore (5.7) holds and the
Lemma is proved.

�

The following is a useful corollary of Lemma 5.11 that we state without a proof.

Corollary 5.12. The value, I(f, x0), is well defined whenever f is pointwise m-C1,γ(x0).

5.3. The Lipschitz property. In this section, we show that I is a Lipschitz mapping on K∗(γ, δ,m),
which are convex subsets of C0,1. This Lipschitz property will have two very important consequences:
a representation of I via integro-differential operators; and a comparison theorem within K∗(γ, δ,m)∩
K∗(γ, δ,m) and hence for general viscosity solutions. The main result is the following theorem and its
corollary.

Theorem 5.13. There is a constant C = C(d, λ,Λ, δ, γ,m) such that if f, g satisfy

f, g ∈ K∗(δ, γ,m) and f − g ∈ C1,γ(Rd),

then for any x ∈ Rd at which I(f, x) and I(g, x) are both defined classically, we have

I(g, x)− I(f, x) ≤ C‖f − g‖C1,γ(Rd).

Corollary 5.14. If f and g satisfy f ∈ K∗(δ, γ,m) and g ∈ K∗(δ, γ,m) as well as φ ∈ C1,γ(Rd) with
g + φ ∈ K∗(δ, γ,m), and all are such that

(f − g)− φ has a non-negative global maximum at x0 ∈ Rd,

then, with C = C(d, λ,Λ, δ, γ,m), we have

I(f, x0)− I(g, x0) ≤ C‖φ‖C1,γ(Rd).

Similarly, as above, if g − φ ∈ K∗(δ, γ,m) and

(g − f)− φ has a non-positive global minimum at x0 ∈ Rd,

then

I(f, x0)− I(g, x0) ≤ C‖φ‖C1,γ(Rd).

The proofs of Theorem 5.13 and Corollary 5.14 will require some preliminary propositions and
lemmas. We will finish the proofs of the Theorem and Corollary at the end of this section.

In estimating I(g, x) − I(f, x) at a given x, it will be necessary to reduce matters to the situation
where f = g at x. This is the purpose of the next result.

Lemma 5.15. There is a C = C(d, λ,Λ, δ, γ,m) such that if s ≥ 0 and f is a function such that
f, f + s ∈ K∗(δ, γ,m), then for all x such that I(f, x) is well defined,

I(f + s, x) ≤ I(f, x) ≤ I(f + s, x) + Cs, ∀ x ∈ Rd.
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Proof. Let us compare Uf to a vertical shift of Uf+s. We use the coordinates, (x, xd+1) ∈ Rd× [0,∞).

Define Ũ : Df → R by

Ũ(x, xd+1) := Uf+s(x, xd+1 + s).

Observe that Ũ = U = 0 on Γf while 1− Cs ≤ Ũ ≤ 1 on Γ0. Furthermore, the translation invariance

of (5.1) ensures that Ũ also solves (5.1) in a translated domain. Thus, by the comparison principle

Ũ ≤ Uf and Uf − Ũ ≤ Cs in Df .

The first inequality implies that

|∇Ũ | ≤ |∇Uf | on Γf ,

while the second inequality, together with the same upper gradient estimate at the boundary used in
Proposition 5.8 (which uses that f ∈ K∗), implies that

|∇(Uf − Ũ)| ≤ Cs on Γf .

In conclusion, we have

|∇Ũ | ≤ |∇Uf | ≤ |∇Ũ |+ Cs on Γf .

Noting that ∇Ũ(x, f(x)) = ∇Uf+s(x, f(x) + s), we conclude that

I(f + s, x) ≤ I(f, x) ≤ I(f + s, x) + Cs.

�

As we saw in Proposition 5.9, the function Uf depends in a Lipschitz manner on the function f , as
long as f lies in K∗(δ, γ,m). The next Lemma will produce a barrier that will allow us to translate
pointwise control of Uf in Df into pointwise control of ∇Uf along Γf , this will be the key step in the
proof of Theorem 5.13.

Lemma 5.16. Fix w ∈ K∗(δ, γ,m) ∩ (m-C1,γ(x0)), X0 ∈ Γw, and r0 ∈ (0, δ/2). Let W : Dw ∩
Br0(X0)→ R be a continuous function such that in the viscosity sense,

M+(D2W ) + Λ |∇W | ≥ −C1 in Dw ∩Br0(X0),

M−(D2W )− Λ |∇W | ≤ C1 in Dw ∩Br0(X0),

|W | ≤ C1|X −X0|1+γ on ∂(Dw ∩Br0(X0)).

Then, with a constant C = C(d, λ,Λ, γ, δ,m, r0) we have

|∇W (X0)| ≤ C · C1.

Proof. Consider the C1,γ(Rd) function given by

ŵ+(x) := ηδ(w(x0) +Dw(x0) · (x− x0) +m |x− x0|1+γ),

where ηδ(t) := δη(t/δ) and η : R→ R is a smooth non-decreasing function such that

η(t) = t for t ≥ 1, η(t) = 1/2 for t ≤ 1/2.

This guarantees that ŵ+(x) ≥ δ/2 and ŵ+(x) ≥ w(x) for all x ∈ Rd with equality for x = x0. In

particular, note that Γw ⊂ Dŵ+ . Then, let Ŵ+ be the unique viscosity solution of{
M+(Ŵ+) + Λ

∣∣∣∇Ŵ+
∣∣∣ = −1 in Dŵ+ ∩Br0(X0),

Ŵ+ = |X −X0|1+γ on ∂(Dŵ+ ∩Br0(X0)).

Using w ∈ m-C1,γ(x0) and a standard barrier argument we have that for c0, r1 small (depending on
λ,Λ,m, r0, and γ) we have

Ŵ+(X) ≥ c0|X −X0|1+γ on ∂(Dw ∩Br1(X0)). (5.8)
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From [58, Remark 3.2] we know that Ŵ+ ∈ C1,γ′(Dŵ+ ∩Br0/2(X0)); and in particular, that

|∇Ŵ+(X0)| ≤ C.

From (5.8) it follows that W ≤ c−1
0 C1Ŵ

+ on ∂(Dw ∩Br1(X0)) and since without loss of generality we
may assume c0 ∈ (0, 1)

Λ
∣∣∣∇(C1Ŵ

+)
∣∣∣+M+(D2(C1Ŵ

+)) = −c−1
0 C1 ≤ −C1 ≤M+(D2W ) + Λ |∇W | in Dw ∩Br1(X0),

in the viscosity sense. Thus, the comparison principle says that

W ≤ Ŵ+ in Dw ∩Br1(X0).

We can repeat this argument from below, using Ŵ− := −Ŵ+ as a barrier, so |W | ≤ Ŵ+ in Dw ∩
Br1(X0). Since we also have W (X0) = Ŵ±(X0) = 0, it follows that |∇W (X0)| ≤ |∇Ŵ+(X0)|, and
from the bound above it follows that

|∇W (X0)| ≤ (c−1
0 C) · C1,

which proves the lemma.
(Proof of (5.8): since the domain Dŵ+ is of class C1,γ we can apply the Hopf Lemma at X0 =

(x0, f(x0)) as well as global C1,γ− estimates for Ŵ+ to conclude that

−∂yŴ+ ≥ 0 in Dŵ+ ∩Br1(X0)

for some r1 ∈ (0, r0/2) is sufficiently small (depending only on λ,Λ,m, r0, and γ). Then, for every
X ′ ∈ Γŵ+ ∩Br1(X0) and X ∈ Dŵ+ ∩Br1(X0) of the form X := X ′ − sed+1 (s > 0) we have

Ŵ+(X) ≥ Ŵ+(X ′) ≥ |X ′ −X0|1+γ .

This means that if X = (x, y) ∈ Dŵ+ ∩Br1(X0) then

Ŵ+(X) ≥
(
|x− x0|2 + (ŵ+(x)− ŵ+(x0))2

)(1+γ)/2
.

At the same time if X ∈ Γw then y = w(x) we have (recall ŵ+(x0) = w(x0))

|y − ŵ+(x0)| = |w(x)− ŵ+(x0)|
≤ |w(x)− ŵ+(x)|+ |ŵ+(x)− ŵ+(x0)|
≤ m|x− x0|1+γ + |ŵ+(x)− ŵ+(x0)|.

from where it follows that

|X −X0| ≤ C(m)|X ′ −X0|.
This shows that for some C(m) > 0 we have

Ŵ+(X) ≥ C(m)−1|X −X0|1+γ on Γw ∩Br1(X0).

Using once again that −∂yŴ+ ≥ 0 in ŵ+ ∩Br1(X0) and Harnack inequality it is not difficult to show

that Ŵ+ ≥ C on Dw ∩ ∂Br1(X0), where C = C(λ,Λ, d,m, γ, r0). This completes the proof (5.8).)
�

The next two lemmas are concerned with how much the operator, I, can deviate when it is evaluated
on two domains that touch at a point with C1 contact. Originally, it was thought that Lemma 5.17
(below) would be sufficient, but this subsequently turned out not to be the case. We have decided to
leave it here because we believe it could be useful for future investigations.

Lemma 5.17. Let f, g be such that f, g ∈ K∗(δ, γ,m)∩ (m-C1,γ(x0)), and f − g ∈ C1,γ(Rd). Assume
that x0 ∈ Rd be a point such that f(x0) = g(x0) and ∇f(x0) = ∇g(x0). In this case, there exists a
C = C(d, λ,Λ, δ, γ,m) such that

|I(f, x0)− I(g, x0)| ≤ C‖f − g‖C1,γ(Rd).
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Proof of Lemma 5.17. The assumptions of the lemma allow us to assert that

∀ x ∈ Rd, f(x) ≥ g(x)− ‖f − g‖C1,γ(Rd) |x− x0|1+γ ,

(Recall, we use the convention that X ∈ Rd+1 whereas x ∈ Rd.) We will modify this function on the
right hand side of the inequality to define a function w,

w(x) := ηδ(g(x)− ‖f − g‖C1,γ(Rd) |x− x0|1+γ),

here ηδ(t) := δη(t/δ) where η : R→ R is a smooth, non-decreasing function such that

η(t) = t for t ≥ 1, η(t) = 1/2 for t ≤ 1/2.

This guarantees that w(x) ≥ δ/2 and that f(x) and g(x) are both greater than w(x) for all x ∈ Rd.
For notational convenience, let us call

X0 = (x0, f(x0)) = (x0, g(x0)) ∈ Γf ∩ Γg.

Thus, by this choice of w, we have,

Dw ⊂ Df and Dw ⊂ Dg.

Recalling Proposition 5.9, it follows that

‖Ug − Uf‖L∞(Dw) ≤ C‖f − g‖L∞(Rd).

Thanks to the globally Lipschitz nature of Uf and Ug, and the definition of w, we have in fact the
following pointwise estimate

|Ug(X)− Uf (X)| ≤ C‖f − g‖C1,γ(Rd)|X −X0|1+γ , for X ∈ Γw ∩Br(X0).

(This follows immediately once we keep in mind the zero boundary values of Uf , Ug on Γf , Γg, and

that both top boundaries separate from Γw like ‖f − g‖C1,γ |X −X0|1+γ .)

Next, we can define the function on Dw, Ũ = Uf − Ug. We see that Ũ is a viscosity solution of

M+(D2Ũ) + Λ
∣∣∣∇Ũ ∣∣∣ ≥ 0 and M−(D2Ũ)− Λ

∣∣∣∇Ũ ∣∣∣ ≤ 0.

Therefore, we may apply Lemma 5.16, with C1 = C‖f − g‖C1,γ , in order to deduce that (recall that
‖Uf − Ug‖L∞ ≤ ‖Uf − Ug‖C1,γ ) ∣∣∣∇Ũ(X0)

∣∣∣ ≤ C‖f − g‖C1,γ .

Hence, by collecting the previous estimates we see that

|∇Uf (X0)−∇Ug(X0)| ≤ C‖f − g‖C1,γ .

�

This next lemma is similar to the previous, except that we adapt the assumptions to allow that the
equations for the respective solutions need not be the same for Uf , Ug.

Lemma 5.18. Let f, g be such that f, g ∈ K∗(δ, γ,m) ∩ (m-C1,γ(x0)), and f − g ∈ C1,γ(Rd), and let
x0 ∈ Rd be a point such that f(x0) = g(x0) and ∇f(x0) = ∇g(x0). Further assume the existence r > 0
and of functions, Vf and Vg that satisfy in the viscosity sense, for X0 = (x0, f(x0)) = (x0, g(x0)),

in Df ∩Br(X0),
∣∣F (D2Vf ,∇Vf )

∣∣ ≤ C1

in Dg ∩Br(X0),
∣∣F (D2Vg,∇Vg)

∣∣ ≤ C1.

Then, there exists a C = C(d, λ,Λ, δ, γ,m, r) such that

|∇Vf (X0)−∇Vg(X0)| ≤ C(‖f − g‖C1,γ(Rd) + C1).
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Proof of Lemma 5.18. The proof of Lemma 5.18 follows nearly identically to that of Lemma 5.17. We
simply note that the auxiliary function, Ũ will be defined as

Ũ = Vf − Vg.

Because of the assumptions on f , g, Vf , Vg, we see that Ũ satisfies in the viscosity sense,

M+(D2Ũ) + Λ
∣∣∣∇Ũ ∣∣∣ ≥ −2C1 and M−(D2Ũ)− Λ

∣∣∣∇Ũ ∣∣∣ ≤ 2C1.

The rest of the argument is identical, as this situation also falls within the scope of Lemma 5.16. �

The next lemma, will be used in the proof of Theorem 5.13; it is a simple consequence of the
definition of viscosity solutions, the uniform ellipticity of F , and the fact that F is assumed to be
rotationally invariant in the D2U argument. We omit the proof.

Lemma 5.19. If F satisfies the assumption of rotational invariance in Section 2.2-(c), Ω is an open
set, R is a rotation, U ∈ C0,1(Ω) is a viscosity solution of

F (D2U,∇U) = 0 in Ω,

then for W = U ◦ R, W solves in the viscosity sense∣∣F (D2W,∇W )
∣∣ ≤ CΛ |R − Id| · ‖∇U‖L∞ , in R−1Ω.

We are finally ready to prove Theorem 5.13.

Proof of Theorem 5.13. Let x0 be an arbitrary point in Rd, let f, g be such that f, g ∈ K∗(δ, γ,m) and
f − g ∈ C1,γ(Rd), we proceed in four steps.

Step 0. (f − g is small.) We note that it will suffice to prove the result under the assumption that
‖f − g‖L∞(Rd) ≤ δ

2 . Otherwise, we can simply use the fact that the constant, C, naturally depends

upon δ, hence by the definition of I, (note, I ≥ 0)

I(g, x)− I(f, x) ≤ I(g, x) + I(f, x) ≤ 2C̃

(δ/2)
(δ/2) ≤ 2C̃

(δ/2)
‖f − g‖L∞ ≤

2C̃

(δ/2)
‖f − g‖C1,γ .

Thus, from here on, we will assume that ‖f − g‖L∞(Rd) ≤ δ
2 .

Step 1. (Reduction to f(x0) = g(x0).)

Consider the function f̂(x) = f(x) + (g(x0) − f(x0)). By step 0, we know f̂ ∈ K∗(γ, δ/2,m). By
Lemma 5.15, we have

|I(f, x0)− I(f̂ , x0)| ≤ C|f(x0)− g(x0)| ≤ C‖f − g‖L∞(Rd).

Therefore, we have that f̂(x0) = g(x0) and

I(g, x0)− I(f, x0) ≤ C‖f − g‖L∞(Rd) + ‖I(g, x0)− I(f̂ , x0)‖.

From this observation, we conclude that to prove the theorem it is sufficient to show that

I(g, x0)− I(f, x0) ≤ C‖f − g‖C1,γ(Rd) at x0 s.t. f(x0) = g(x0). (5.9)

Accordingly, for the rest of the proof we assume that x0 ∈ Rd is such that f(x0) = g(x0), and focus
on proving (5.9).

Step 2. (Rotation to achieve ∇f(x0) = ∇g(x0).)
Let us denote by nf and ng respectively the outer normals to Γf and Γg at the point (x0, f(x0)).

Let R denote the rotation in Rd+1 given by

Rnf = ng, and Rv = v if v ⊥ span{nf , ng}.
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We note that R is a rotation that sends the tangent plane to Γf at X0 to the tangent plane of Γg at
X0. Furthermore, by definition, |R − Id| ≤ C |nf − ng|, we see that

|R − Id| ≤ C |nf − ng| ≤ C|∇f(x0)−∇g(x0)| ≤ C‖∇f −∇g‖L∞ . (5.10)

Then, we denote by T the isometry T X := R(X −X0) + X0. We note that we can choose r0 small
enough so that we can choose a function, w, that satisfies

Br0(X0) ∩ T (Df ) = Br0(X0) ∩Dw,

and we can still ensure w ∈ K∗(γ, 1
2δ, 2m) ∩ (m-C1,γ(x0)). We then define a function Ũ by

Ũ(X) = Uf (T −1X) ∀ x ∈ Br0(X0) ∩Dw.

Observe that

∇Ũ(X0) = R∇Uf (X0).

Since |∇Uf (X0)| ≤ C(d, λ,Λ, δ,M), it follows that

|∇Ũ(X0)−∇Uf (X0)| ≤ |(R− Id)∇Uf (X0)| ≤ C|R − Id|,
and we conclude, per (5.10), that

|∇Ũ(X0)−∇Uf (X0)| ≤ C|∇f(x0)−∇g(x0)|. (5.11)

Step 3. We first confirm the equation satisfied by Ũ in Br0(X0)∩Dw, and then we will invoke Lemma
5.18. Indeed, since ∇Uf ∈ L∞(Df ) (via, e.g. Proposition 5.8), we see, by the rotational invariance
assumed for F and Lemma 5.19, that in the viscosity sense, by Lemma 5.19,∣∣∣F (D2Ũ ,∇Ũ)

∣∣∣ ≤ CΛ |R − Id| · ‖∇Uf‖L∞ , in Br0(X0) ∩Dw.

This shows that both Ũ and Ug satisfy the assumptions of Lemma 5.18 (applied to the respective
domains of Dw and Dg), and so we can conclude that∣∣∣∇Ũ(X0)−∇Ug(X0)

∣∣∣ ≤ C(‖w − g‖C1,γ + C̃).

Here, we have used that

C̃ = CΛ |R − Id| · ‖∇U‖L∞ .
Collecting all of the above estimates, we see that under the assumption that f(X0) = g(X0) and

∇f(X0) = ∇g(X0), the estimate holds,

|∇Uf (X0)−∇Ug(X0)| ≤ C‖f − g‖C1,γ ,

where we note, by construction of the function, w, that we can choose w so that ‖w − g‖C1,γ ≤
‖f−g‖C1,γ Hence, the conclusion of the theorem under the step 3 assumption holds. Hence, combining
with steps 1 and 2 give the original result.

�

Proof of Corollary 5.14. First, we give the argument for the case when f − g− φ attains a maximum.
Indeed, we have for s = f(x0)− g(x0)− φ(x0) ≥ 0 that

f − φ− s ≤ g in Rd,
f − φ− s = g at x0.

First, we note that by the assumptions that f ∈ K∗(γ, δ,m), g ∈ K∗(γ, δ,m), and φ ∈ C1,γ , this
inequality shows that in fact g, f ∈ m-C1,γ(x0). Hence, by Lemma 5.11, we know that I(f, x0) and
I(g, x0) are defined classically.

Then, the GCP says that

I(f, x0) ≤ I(g + φ+ s, x0).
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Also since s ≥ 0 and g + φ ∈ K∗(γ, δ,m), Lemma 5.15 yields

I(g + φ+ s, x0) ≤ I(g + φ, x0).

Furthermore, by Theorem 5.13 we know that

I(g + φ, x0)− I(g, x0) ≤ C‖φ‖C1,γ(Rd).

Hence, putting this all together,

I(f, x0)− I(g, x0) ≤ I(g + φ+ s, x0)− I(g, x0) ≤ I(g + φ, x0)− I(g, x0) ≤ C‖φ‖C1,γ(Rd).

The second part of the result, when g − f − φ attains a minimum is analogous. In this case, s ≤ 0,
and the GCP says that

I(f, x0) ≤ I(g − φ− s, x0).

Lemma 5.15 then shows that

I(g − φ− s, x0) ≤ I(g − φ, x0).

The rest follows the same steps, invoking Theorem 5.13.
�

The next Lemma quantifies how the dependence of I(f, x) on values of f far away from x decays
as the distance to x grows (see also [38, Proposition 3.8]). It culminates in Lemma 5.22, which is a
requirement for producing a min-max result of the form promised in Theorem 1.4, and it appears in
Section 7 as Assumption 7.1-(vii).

Lemma 5.20. There is a C = C(d, λ,Λ, δ, γ,m,L), such that given f, g ∈ K∗(δ, γ,m) ∩m-C1,γ(x0),
with f, g ≤ L, x0 ∈ Rd, and R > 1 all such that

f ≡ g in BR(x0),

and if a.e. BR(x0), then we have

|I(f, x0)− I(g, x0)| ≤ CR−2‖f − g‖L∞(Rd) + CR−1−γ .

Proof of Lemma 5.20. First, we note that the assumption that f, g ∈ m-C1,γ(x0) ensures that I(f, x0)
and I(g, x0) are well defined, via Corollary 5.12.

We will proceed in two steps. The first step is the result under the additional assumption that the
maximum of f over BR(x0) occurs at x0. The second step is to use the K∗ upper bound for f , with
Theorem 5.13, to reduce to the first step, incurring an extra error.

We will only show half of the inequality in that

I(f, x0)− I(g, x0) ≤ CR−2‖f − g‖L∞(Rd) + CR−1−γ . (5.12)

The reverse inequality follows by constructing an appropriate subsolution, where below we treat the
case of a supersolution. The modifications are standard.

Step 1 (Assume f(x0) is the maximum of f .)
Let us assume, without loss of generality, that x0 = 0 and for |x| ≤ R, f(x) ≤ f(0). Let us consider

then, the set

T := {(x, xd+1) ∈ Rd+1 | 0 ≤ xd+1 ≤ f(x), x ∈ BR/2(0)}.

We will construct a barrier that traps f on the top boundary, at (0, f(0)). For a function φ0(y)
(y ∈ [0, L]) to be determined, let

ψR(x, xd+1) = ψ̃(x/R) +R−2φ0(xd+1), ψ̃(x) := |x|2(1 + |x|2)−1.

A straightforward computation shows that

∇ψR(x, xd+1) = (R−1(∇ψ̃)(x/R), R−2φ′0(xd+1))
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and

D2ψR(x, xd+1) =

(
R−2(D2ψ̃)(x/R) 0

0 R−2φ′′0(xd+1)

)
.

Then, if φ0(xd+1)′′ ≤ 0 and φ′0(xd+1) ≤ 0 for all xd+1 ∈ [0, L], we have

M+(D2ψR) + Λ|∇ψR| ≤ ΛR−2‖D2ψ̃‖∞ + λR−2φ′′0(xd+1) + ΛR−2‖∇ψ̃‖∞ − ΛR−2φ′0(xd+1).

Therefore,

M+(D2ψR) + Λ|∇ψR| ≤ R−2
{
λφ′′0(xd+1)− Λφ′0(xd+1) + Λ‖ψ̃‖C2

}
. (5.13)

With the goal in mind that is to force this inequality to be non-positive (i.e. ψR should be a super
solution), we can now choose φ0. Let us take, for some M, b, c > 0, and restricting y ∈ [0, c],

φ0(y) = M(1− e−b(c−y)).

Then, for every y ≥ 0 we have

φ′0(y) = −bMe−b(c−y) ≤ 0, φ′′0(y) = −b2Me−b(c−y) ≤ 0,

and thus

λφ′′0(y)− Λφ′0(y) + Λ‖ψ̃‖C2 = (−λb2 + Λb)Me−b(c−y) + Λ‖ψ̃‖C2 .

We first choose b > 0 to be large enough so that

−λb2 + Λb ≤ −1.

Furthermore, we see that for y ∈ [0, c], and c ≤ L

e−b(c−y) ≥ e−bc ≥ e−bL,
thus with our choice of b,

(−λb2 + Λb)Me−b(c−y) ≤ (−λb2 + Λb)Me−bL.

Now, we can choose M large enough, depending only on λ, Λ, b, L, so that

(−λb2 + Λb)Me−bL ≤ −Λ‖ψ̃‖C2 .

Finally, we set c = f(0). Hence, we have attained

M+(D2ψR) + Λ|∇ψR| ≤ 0 in DL,

and we recall that by our assumption that f = g in BR, Df ∩ T = Dg ∩ T , and that Df ⊂ DL.
We gather the following properties of ψR

ψR ≥ ψ̃(x/R) on Γf ,

ψR ≥ c0 > 0 on {y = 0},
ψR ≥ c0 > 0 on {(x, y) : |x| = R/2}.

We further recall that by Proposition 5.9 we have

‖Uf − Ug‖L∞(Df∩Dg) ≤ C‖f − g‖L∞(Rd).

Thus, this means that for a universal choice of C, we can show that

on ∂T, Uf − Ug ≤ C‖f − g‖L∞ψR.
Since Uf and Ug are viscosity solutions of the same equation, we see that W = Uf − Ug is a viscosity
subsolution of

M+(D2W ) + Λ |∇W | ≥ 0.

Using the comparison theorem in T with the functions W and C‖f − g‖L∞ψR, hence

∀ X ∈ T, Uf (X)− Ug(X) ≤ C‖f − g‖L∞ψR(X).
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By construction, we have that Uf (0, f(0)) = Ug(0, f(0)) = ψR(0, f(0)) = 0, and so

∂nUf (0, f(0))− ∂nUg(0, f(0)) = ∂nW (0, f(0)) ≤ ∂nψR(0, f(0)) ≤ CR−2‖f − g‖L∞(Rd),

which gives the desired result in (5.12). This completes the proof in the setting of Step 1.
Step 2 (reducing to x0 is a max of f in BR).
Given that we are assuming f ∈ K∗(γ, δ,m), we know that for an appropriate choice of c, depending

upon m,

∀ x ∈ BR(x0), f(x) ≤ f(x0) + Cm

∣∣∣∣x− x0

R

∣∣∣∣1+γ

.

Hence, replacing both f and g by

f̃(x) = f(x)− Cm
∣∣∣∣x− x0

R

∣∣∣∣1+γ

and g̃(x) = g(x)− Cm
∣∣∣∣x− x0

R

∣∣∣∣1+γ

,

we see that we satisfy the assumptions of Step 1.

Furthermore, we know, from Theorem 5.13, after extending the function Cm
∣∣x−x0

R

∣∣1+γ
to all of Rd

in a way that does not increase its C1,γ norm by a factor of more than, 2, that we have∣∣∣I(f, x0)− I(f̃ , x0)
∣∣∣ ≤ CmLR−1−γ .

This, combined with the result in Step 1, shows the desired estimate.
�

Remark 5.21. It is worth comparing this decay rate with what one observes for the Dirichlet-to-
Neumann map in the half-space for the Laplacian. Of course, one obtains as the D-to-N for the
Harmonic extension the half Laplacian, −(−∆)1/2f . Because the harmonic extension satisfies an
equation in half-space, a simple rescaling argument can be shown that in the context of the previous
Lemma (with f ≡ g in BR(x0)),

|(−∆)
1
2 (f − g)(x0)| ≤ CR−1‖f − g‖L∞ .

This is, of course, different from what we have obtained above. The discrepancy can be attributed to
two factors: we work in a finite width domain, with a Dirichlet condition at y = 0; and our equation
does not rescale in a positively homogeneous way (different powers from the Hessian and gradient).
Thus, as seen from our barrier, ψR, the term R−2 is not surprising. The way in which this estimate
is invoked is completely unaffected by the actual decay on the right hand side of the estimate.

Next, we remove the assumption from the previous lemma that required f ≡ g in BR(x0).

Lemma 5.22. If C = C(d, λ,Λ, δ, γ,m,L) is as in Lemma 5.20, that f, g ∈ K∗(δ, γ,m) and f − g ∈
C1,γ(B2R(x0)), with f, g ≤ L, x0 ∈ Rd, and R > 1, then

|I(f, x0)− I(g, x0)| ≤ C‖f − g‖C1,γ(B2R(x0)) + CR−2‖f − g‖L∞(Rd) + CR−1−γ .

Proof of Lemma 5.22. Let ψ be a smooth function such that 0 ≤ ψ ≤ 1, ψ ≡ 1 in BR(x0), ψ ≡ 0
outside B2R(x0), and such that

‖∇ψ‖L∞ ≤ CR−1, ‖D2ψ‖L∞ ≤ CR−2.

Then, let

f̂ = ψf + (1− ψ)g,
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In particular, f̂ ≡ g outside B2R(x0). Therefore, since f−g ∈ C1,γ(B2R(x0)), we have f̂−g ∈ C1,γ(Rd)
(as f̂ − g = ψ · (f − g)). Thus, by Theorem 5.13, it follows that

|I(g, x)− I(f̂ , x)| ≤ C‖g − f̂‖C1,γ(Rd)

= C‖ψ · (g − f)‖C1,γ(B2R(x0))

≤ C‖ψ‖C1,γ‖f − g‖C1,γ(B2R(x0))

Meanwhile, since f̂ ≡ f inside BR(x0), by Lemma 5.20, we have

|I(f, x)− I(f̂ , x)| ≤ CR−2‖f − f̂‖L∞(Rd) + CR−1−γ

However, note that

‖f − f̂‖L∞(Rd) = ‖(1− ψ)(f − g)‖L∞(Rd) ≤ ‖f − g‖L∞(Rd).

Then, by the triangle inequality, we conclude that

|I(f, x0)− I(g, x0)| ≤ C‖f − g‖C1,γ(B2R(x0)) + CR−2‖f − g‖L∞(Rd) + CR−1−γ .

�

Proposition 5.23. If x0 is fixed, f, g ∈ K∗(γ, δ,m) and f − g ∈ C1,γ(B2R(x0)), f, g ≤ L, and f ≥ g,
then there exists C = C(d, λ,Λ, δ, γ,m,L) so that for R > 1,

I(f, x0) ≤ I(g, x0) + C

(
osc

B2R(x0)
(f − g) + ‖∇f −∇g‖Cγ(B2R(x0)) +R−2 osc

L∞(Rd)
(f − g) +R−1−γ

)
.

Proof of Proposition 5.23. Fix x0 ∈ Rd and R > 1. Let c := inf
B2R(x0)

(f − g) and note that

‖f − c− g‖L∞(B2R(x0)) ≤ osc
B2R(x0)

(f − g)

‖f − c− g‖L∞(Rd) ≤ osc
Rd

(f − g)

Since, by assumption, c ≥ 0, Lemma 5.15 shows that

I(f, x0) ≤ I(f − c, x0) ∀ x ∈ Rd.

Then, bounding I(f − c, x0)− I(g, x0) from above using Lemma 5.22, it follows that

I(f, x0)− I(g, x0) ≤ C‖f − c− g‖C1,γB2R(x0) + CR−2‖f − c− g‖L∞(Rd) + CR−1−γ ,

and using the above bounds on ‖f − c− g‖L∞ in B2R and Rd with the respective oscillation of f − g,
we have

I(f, x0)− I(g, x0) ≤ C( osc
B2R(x0)

(f − g) + ‖∇f −∇g‖Cγ(B2R(x0))) + CR−2 osc
L∞(Rd)

(f − g) + CR−1−γ).

�

A useful corollary of Proposition 5.23 is that we can construct a bump function that does not
increase the values of I too much.

Corollary 5.24. Let φ(x) = |x|2 (1 + |x|2)−1 and for R > 1 and C ≥ 0, define φR(x) = C + φ(x/R).
Given any ε > 0, there exists C1(ε), such that for all R > C1(ε) for all g ∈ K∗(γ, δ,m)∩ (m-C1,γ(x0))
with g + φR ∈ K∗(γ, δ,m),

I(g + φR, x0)− I(g, x0) ≤ ε.
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Proof of Corollary 5.24. We observe that

osc
Rd
φR = 1

‖∇φR(x)‖L∞(Rd) ≤ R−1‖∇φ1‖L∞(Rd)

[∇φR(x)]Cγ(Rd) ≤ R−1−γ [∇φ1(x)]Cγ(Rd).

Next, we note that for all R > 1, g+φR ∈ K(γ, δ,m+1). Let us fix x, and let us introduce a temporary
parameter, ρ > 1. We can invoke Proposition 5.23 for Bρ, to obtain

∀ x ∈ Rd, I(g + φR, x)− I(g, x) ≤ C
(

osc
B2ρ(x)

φR + ‖∇φR‖Cγ(B2ρ(x)) + ρ−2 + ρ−1−γ
)
.

First, we can choose C1(ε) large enough so that for all ρ > C1(ε), we have

C(ρ−2 + ρ−1−γ) <
ε

2
.

Next we take ρ to be fixed, and we can choose C2(ε, ρ) large enough so that

C

(
osc

B2ρ(x)
φR + ‖∇φR‖Cγ(B2ρ(x))

)
<
ε

2
,

which is possibly because of the decay of ∇φR that is uniform in x.
�

6. The two-phase operator

Let us now return to the analysis for the two phase operator. We will show that the two-phase
boundary condition can be completely characterized as a combination of two operators in the same
category as I, as in Section 5.

We recall that the sets, K(γ, δ,m), K∗(γ, δ,m), K∗(γ, δ,m) were defined in (5.3)–(5.5). For L > δ
fixed, we consider a modification of these sets as follows:

K(γ, δ,m,L) = {f ∈ K(γ, δ,m) : f ≤ L− δ}; (6.1)

and similarly,

K∗(γ, δ,m,L) = {f ∈ K∗(γ, δ,m) : f ≤ L− δ}
K∗(γ, δ,m,L) = {f ∈ K∗(γ, δ,m) : f ≤ L− δ}.

For f in any of these sets, we define the domains,

D+
f := Df = {(x, xd+1) : 0 < xd+1 < f(x)}

D−f := {(x, xd+1) : f(x) < xd+1 < L}.

Furthermore, we define Uf as the unique continuous viscosity solution to the equations
F1(D2Uf ,∇Uf ) = 0 in D+

f ,

F2(D2Uf ,∇Uf ) = 0 in D−f ,

Uf = 0 on Γf ,
Uf = 1 on Γ0,
Uf = −1 on ΓL,

(6.2)

which will have a unique solution whenever f ∈ C0,1(Rd) and δ ≤ f ≤ L− δ, see Proposition 5.3. (We
recall that the notation for Γf , Γ0, ΓL is in Section 2.3.)

In order to state the free boundary condition, we assume that we are given a Lipschitz continuous
function

G : (0,∞)2 → R,
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which satisfies the following uniform monotonicity conditions for a.e. (a, b),

λ0 ≤
∂

∂a
G(a, b) ≤ Λ0, λ0 ≤ −

∂

∂b
G(a, b) ≤ Λ0. (6.3)

The function Uf defined in (6.2) is always continuous across Γf , but in general it will not be differen-
tiable across it. However, in most situations, it will be differentiable separately on each side of Γf . In
particular, when f ∈ K(γ, δ,m,L), the following two limits exist

∇U+
f (X) := lim

X′→X,X′∈D+
f

∇Uf (X ′),

∇U−f (X) := lim
X′→X,X′∈D−f

∇Uf (X ′).

When these operations do exist, they coincide with the slightly more general operators, ∂±n U , which
we define as:

for X0 ∈ Γf , and n(X0) the unit normal derivative to Γf , pointing into the set D+f,

∂+
n U(X0) := lim

t→0

U(X0 + tn(X0))− U(X0)

t
and ∂−n U(X0) = − lim

t→0

U(X0 − tn(X0))− U(X0)

t
. (6.4)

We note that ∂±n U are normalized so that in the context of Uf solving (6.2), we have that both ∂+
n Uf

and ∂−n Uf are positive, and we also note that the inward normal to D−f is the vector (−n(X0)).

We define the two-phase analogue to the one-phase operator (5.2) by

H(f, x) := G(∂+
n Uf (x, f(x)), ∂−n Uf (x, f(x))). (6.5)

As we are about to show, this “two phase” operator, (6.5), may be expressed as a composition with
two one-phase operators of the form (5.2). This fact makes it easy to extend basically all of the results
in the previous section to the operator in (6.5). Indeed, to (6.5) we associate two operators I+ and
I− of the form (5.2), as follows. First, given f we define U+

f as the unique solution of
F1(D2U+

f ,∇U
+
f ) = 0 in D+

f ,

U+
f = 0 on Γf ,

U+
f = 1 on Γ0.

(6.6)

Similarly, we can define U−f as the unique solution of
F2(D2U−f ,∇U

−
f ) = 0 in D−f ,

U−f = 0 on Γf ,

U−f = −1 on ΓL

(6.7)

Using as notation n−(X0) to be the inward normal to the set, D−f , we define the operators I± as the

inward normals to their respective phases,

I+(f, x) := ∂nU
+
f (x, f(x)), I−(f, x) := −∂n−U−f (x, f(x)) = ∂−n U

−
f (x, f(x)). (6.8)

This means that we will also write the two-phase operator as

H(f, x) := G(I+(f, x), I−(f, x)). (6.9)

We note again we enforce the convention that we seek operators such that both I± are non-negative
quantities. However, thanks to the boundary condition U−f = −1 on ΓL, it is not hard to check that

−I− obeys the GCP over the set, K(γ, δ,m,L).
In order to make an exact analog between I− defined in (6.8) and the operator, I, defined in (5.2),

we introduce a transformation so that I− can be recognized as an operator that uses a solution to
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an equation in D+
f = Df (in the notation of Section 5). To this end, we need to transform both the

equation for the negative phase and the lower boundary that was previously Γf . Thus, we define

F̃ (Q, p) := −F (−Q, p), and f̃(x) := f(−x),

and we take Ũ−f to be the unique solution of
F̃2(D2Ũ−f ,∇Ũ

−
f ) = 0 in DL−f̃ ,

Ũ−f = 0 on ΓL−f̃ ,

Ũ−f = 1 on Γ0.

(6.10)

The natural relationship between I−(f, x) and Ũf is verified by the following lemma.

Lemma 6.1. For all f ∈ K(γ, δ,m,L), if I−(f, x) is defined in (6.8), IF̃2
is defined as in (5.1) and

(5.2) with F replaced by F̃2, and Ũ−f is defined in (6.10), then

I−(f, x) = −∂nŨ−f (−x, L− f̃(−x)) = −IF̃2
(L− f̃ ,−x), (6.11)

and −IF̃ is an operator that satisfies the definitions and assumptions of Section 5.

Proof of Lemma 6.1. First observe that if y ≥ f(x), then L− y ≤ L− f̃(−x), and in fact

(x, y) ∈ D−f ⇐⇒ (−x, L− y) ∈ DL−f̃ .

Furthermore, we list some similar and useful related observations:

(x, y) ∈ ΓL−f̃ ⇐⇒ (−x, L− y) ∈ Γf ,

(x, y) ∈ Γf ⇐⇒ (−x, L− y) ∈ ΓL−f̃ ,

nf (x, f(x)) = nL−f̃ (−x, L− f̃(−x)).

Thus, given Uf as in (6.2), define V : DL−f̃ → R by

V (x, y) = −U(−x, L− y).

The function V solves 
−F2(−D2V,∇V ) = 0 in DL−f̃ ,

V = 0 on ΓL−f̃ ,

V = 1 on Γ0.

In other words by uniqueness of solutions, we have V = Ũ−f .

Using that if (x, y) ∈ Γf , then

∇Uf (x, y) = ∇V (−x, L− y),

we see that

∇Uf (x, y) · nf (x, f(x)) = ∇V (−x, L− y) · nL−f̃ (−x, L− f̃(−x)).

We also observe that if F2 satisfies the (λ-Λ) ellipticity of Definition 2.4, then F̃2 enjoys the same
ellipticity constants and extremal operators. Furthermore, by definition (5.1) and (5.2) with F replaced

by F̃2 we see that by construction,

∂nŨ
−
f (−x, L− f̃(−x)) = IF̃ (L− f̃ ,−x)

�

We conclude this section with the analogous statements from Section 5 (Theorem 5.13 and Corollary
5.14), but tailored to the two-phase operator, H.
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Theorem 6.2. If f and g satisfy f ∈ K∗(δ, γ,m,L) and g ∈ K∗(δ, γ,m,L) as well as φ ∈ C1,γ(Rd),
g + φ ∈ K∗(δ, γ,m), f − φ ≤ L− δ, f − φ is m-C1,γ-semi-convex, and all are such that

(f − g)− φ has a non-negative global maximum at x0 ∈ Rd,

then, with C = C(d, λ,Λ,Λ0, δ, γ,m), we have

H(f, x0)−H(g, x0) ≤ C‖φ‖C1,γ(Rd).

Proof. First of all, observe that (6.3) implies that

G(a, b)−G(a′, b′) ≤ Λ0(a− a′)+ + Λ0(b′ − b)+,

for all a, a′, b, b′ ∈ (0,∞). Therefore, recalling the definitions of I± in (6.8) and the monotonicity of
(6.3), we see that

H(f, x0)−H(g, x0) = G(I+(f, x0), I−(g, x0))−G(I+(f, x0), I−(g, x0))

≤ Λ0(I+(f, x)− I+(g, x))+ + Λ0(I−(g, x)− I−(f, x))+.

Now, according to Corollary 5.14,

I+(f, x0)− I+(g, x0) ≤ C‖φ‖C1,γ(Rd).

Lemma 6.1 and Corollary 5.14 (applied when a minimum is attained) show that

(I−)(g, x0)− (I−)(f, x0) = −IF̃2
(L− g̃,−x0)− (−IF̃2

(L− f̃ ,−x0)) ≤ C‖φ‖C1,γ(Rd).

(Here we note that we used f − φ ≤ L − δ and f − φ m-C1,γ-semi-convex to obtain L − f̃ − (−φ̃) ∈
K∗(γ, δ,m), and we used that (L− f̃)− (L− g̃)− (−φ̃) attains a minimum at x0.) It then follows that

H(g, x0)−H(f, x0) ≤ CΛ0‖φ‖C1,γ(Rd).

�

7. An integro-differential representation of I and H

This section proves that the free boundary operator, I, defined in (5.2), and the two-phase operator,
H, defined in (6.5), are in fact integro-differential operators, and they can be represented, via a min-
max procedure, as claimed in Theorem 1.4. Although the perceptive reader will have noticed, a
uniqueness theorem for parabolic equations involving I or H can be deduced from Corollary 5.24,
we still think it is useful to pursue the integro-differential development for I. We would like to
point out that, in our opinion, we would have not have realized the properties of I in Section 5
(especially in Corollary 5.14 and Proposition 5.23) without expecting that I is a min-max of integro-
differential operators. In particular, the integro-differential framework was essential for our choice
to pursue I as a Lipschitz mapping on subsets of C1,γ , instead of the possibly more obvious space
of C1,1. This distinction is significant, as the reader will see in this section, because it means that
the representative integro-differential operators will not contain any second order terms– a welcome
simplification for using the integro-differential theory. Furthermore, as one will subsequently see, the
preservation of modulus (claimed in Theorem 1.1) can be deduced purely from a comparison theorem
for these fractional parabolic equations. However, we hope that the integro-differential framework will
be useful to gain higher regularity results. In future contexts, it seems that, e.g. Theorem 6.2 will not
be enough, but rather one will need more refined information as hinted by Theorem 1.4. Thus, we
have chosen to study some initial properties of the integro-differential representation of I here.

The results of this section do not rely on the underlying free boundary problem, and so we treat
these operators as a class of their own.
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7.1. The general class of operators. To this end, we assume that J is an operator that acts on
functions on Rd and that satisfies the following assumptions.

Assumption 7.1. J has the following properties:

(i) 0 < γ < 1 is fixed;

(ii) J :

(⋃
δ>0

⋃
m>δ

K(γ, δ,m)

)
→ C0(Rd).

(iii) For each δ and m, J is a Lipschitz mapping on the sets K(γ, δ,m), whose Lipschitz constant,
C(δ,m) increases as δ decreases or m increases.

(iv) J satisfies the GCP (Definition 2.2).
(v) J is translation invariant.

(vi) If f ∈ K(γ, δ,m) and c > 0 is a constant, then

∀ x ∈ Rd, J(f + c, x) ≤ J(f, x).

(vii) J enjoys the operator splitting property: ∃ C = C(γ, δ,m) and ∃ ω (a modulus with ω(R) → 0
as R→∞), such that ∀f, g ∈ K(γ, δ,m), for R > 1

‖J(f, ·)− J(g, ·)‖L∞(BR) ≤ C(‖f − g‖C1,γ(B2R) + ω(R)‖f − g‖L∞(Rd) + ω(R)).

Remark 7.2. We note that as presented, the assumptions for J only include operators like I(f),

G(I(f)), G(I(f)) ·
√

1 + |∇f |2, which appear in the one-phase problem. However, thanks to Lemma

6.1, we see that the operator, H(f), which is required for the two-phase problem, reduces to the case of
I(f), with the additional constraint that all of the constants involved will also depend upon the height
of the upper boundary, which is given by L in Section 6.

The first results we will show are that any J , as in Assumption 7.1, can be represented as a min-max
of integro-differential operators, followed by proving some properties of the corresponding extremal
operators for the class that includes J . The basis of the results in this section is taken from the main
result in [37], and for convenience, we restate it here, in the context of the operators, J .

Theorem 7.3 (from Theorem 1.6, Proposition 1.7 of [37]). If J satisfies items (iii), (iv), (vii) of
Assumption 7.1, then

∀ f ∈ K(γ, δ,m), J(f, x) = min
g∈K(γ,δ,m),

max
L∈L(K(γ,δ,m))

{J(g, x) + L(f − g, x)}, (7.1)

where L(K(γ, δ,m)) is a collection of linear operators, L : C1,γ → C0, that enjoy the following form:

L(f, x) = c(x)f(x) + b(x) · ∇f(x) +

∫
Rd

(f(x+ h)− f(x)− 1B1(h)∇f(x) · h)µ(x, dh), (7.2)

and satisfy for some C, uniformly depending on the norm ‖J‖K(γ,δ,m)→Cγ′ ,

‖c‖L∞ , ‖b‖L∞ ≤ C and sup
x∈Rd

∫
Rd

min{|h|1+γ , 1}µ(x, dh) ≤ C. (7.3)

Finally, the Lévy measures satisfy, for a uniform constant across the family, L,

sup
x∈Rd

∫
Rd\BR

µ(x, dh) ≤ Cω(R). (7.4)

Although for many purposes, this representation in (7.1) and (7.2) will suffice, in our current context
we will require (and prove) something slightly more precise. It turns out that since J is translation
invariant, one can take a different approach to the representation in (7.1) and obtain more detail on
the collection of L in (7.2).

A key building block that goes into the proof of Theorem 7.3 is the structure of linear functionals
on K(γ, δ,m) that enjoy the GCP. We state it explicitly, and refer the proof to modifications of [32]
or [37].
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Proposition 7.4. If ` : K(γ, δ,m) → R is a bounded linear functional that enjoys the GCP based at
x0 = 0 (Definition 2.2), then there exists b ∈ R, c ∈ R, and a measure, µ, so that ∀ f ∈ K(γ, δ,m),

`(f) = cf(0) + b · ∇f(0) +

∫
Rd

(f(h)− f(0)− 1B1(h)∇f(0) · h)µ(dh),

where b, c, and µ satisfy the same bounds as in Theorem 7.3, but none of them depend on x.

We will state the following theorem, and the proof will appear after two other results are established.

Theorem 7.5 (Translation invariant min-max). If J is as in Assumption 7.1, then J admits a min-
max representation as in (7.1) in which each L is also translation invariant; i.e. L ∈ Linv, and Linv
is the class which contains all linear operators of the form

L(f, x) = cf(x) + b · ∇f(x) +

∫
Rd

(f(x+ h)− f(x)− 1B1(h)∇f(x) · h)µ(dh), (7.5)

where each of c, b, µ are independent of x. Furthermore, given a C1 > 0, there exists a C2 > 0 such
that for all J with a Lipschitz norm bounded by C1, all such c, b, and µ, resulting from an L ∈ Linv,
we have |c| ≤ C2, |b| ≤ C2,∫

Rd
max

(
|h|1+γ , 1

)
µ(dh) ≤ C2, and

∫
Rd\BR

µ(dh) ≤ C2ω(R).

The class of operators, Linv in (7.5), and the min-max in (7.1) both depend on γ, δ, and m, via
K(γ, δ,m).

There are two important consequences of Theorem 7.5. First, following as in [37, Section 4.6 and
Proposition 4.35], this identifies the natural class of extremal operators for J as

M+
inv(f, x) = max

L∈Linv
(L(f, x)) and M−inv(f, x) = min

L∈Linv
(L(f, x)) . (7.6)

These extremal operators are defined specifically to produce, for all f, g ∈ K(γ, δ,m), the inequalities:

M−inv(f − g, x) ≤ J(f, x)− J(g, x) ≤M+
inv(f − g, x). (7.7)

We note that the translation invariance shows that

∀ x ∈ Rd, M±inv(f, x) = M±inv(τxf, 0).

Second, the translation invariance of J shows that all of the desired properties of Linv can be obtained
from studying the (nonlinear) functional

j : K(γ, δ,m)→ R with j(f) := J(f, 0).

This functional, j, also satisfies the GCP based at x0 = 0 (Definition 2.2). As will be shown in the
remainder of this subsection, this means that once J is fixed, the class L can be restricted even further
so that one uses only those L in the Clarke differential of j, i.e. those L such that

L(f, x) = `(τxf), for some choice of ` ∈ [∂j]K(γ,δ,m),

where we recall in Definition 2.6 the notation, [∂j]K(γ,δ,m). Thus, we can define a different extremal
operator, depending explicitly on J and K(γ, δ,m) as

M+
J,K(γ,δ,m)(f, x) = max

`∈[∂j]K(γ,δ,m)

(l(τxf)) and M−J,K(γ,δ,m)(f, x) = min
`∈[∂j]K(γ,δ,m)

(l(τxf)) , (7.8)

and the inequalities in (7.7) still hold. We note, by definition, that M±J,K(γ,δ,m) are translation invariant.

It is also true that these M±J,K(γ,δ,m) serve as extremal operators for J , which we record here.

Proposition 7.6. If J is fixed, and M±J,K(γ,δ,m) are defined in (7.8), then J and M±J,K(γ,δ,m) also obey

the inequalities in (7.7) with M±inv replaced by M±J,K(γ,δ,m). Furthermore, M±J,K(γ,δ,m) are Lipschitz

functions, as mappings of C1,γ(Rd)→ C0(Rd) with a Lipschitz norm bounded by that of J .
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Proof of Proposition 7.6. This proof is a direct consequence of the fact that [∂j]K(γ,δ,m) is non-empty
([29, Proposition 2.1.2]), combined with a mean value property enjoyed by j and ∂j, due to Lebourg
(see, e.g. [29, Theorem 2.3.7]). It says that given any f, g ∈ K(γ, δ,m), there exists an element,
` ∈ [∂j]K(γ,δ,m), so that

j(f)− j(g) = `(f − g).

Hence, taking a max over [∂j]K(γ,δ,m), (we note as in [29, Proposition 2.1.2], [∂j]K(γ,δ,m) is weak-∗
compact)

∀, f, g ∈ K(γ, δ,m), j(f)− j(g) ≤ max
`∈[∂j]K(γ,δ,m)

(`(f − g)) .

A similar argument produces the lower inequality in (7.7). The Lipschitz nature of M±J,K(γ,δ,m) was

already apparent from the original invocation of [37, Theorem 1.6, Proposition 1.7], which appeared
in (7.1)–(7.3); correspondingly, this implies that the bounds on the linear operators are uniform over
these ingredients.

�

Finally, we give the one last argument for the proof of Theorem 7.5.

Proof of Theorem 7.5. Following that last step of the proof of Proposition 7.6, we see that

∀ f, g ∈ K(γ, δ,m), j(f) ≤ max
`∈[∂j]K(γ,δ,m)

(j(g) + `(f − g)) .

Now, taking a minimum over g, gives

j(f) ≤ min
g∈K(γ,δ,m)

max
`∈[∂j]K(γ,δ,m)

(j(g) + `(f − g)) ,

and evaluating when g = f , shows

min
g∈K(γ,δ,m)

max
`∈[∂j]K(γ,δ,m)

(j(g) + `(f − g)) ≤ j(f).

Now, recalling the fact that J is translation invariant, we see that

J(f, x) = j(τxf),

and now the theorem follows from that fact that any ` ∈ [∂j]K(γ,δ,m) also enjoys the comparison
principle, and thus must be of the form (7.5), per Proposition 7.4.

�

Corollary 7.7. For each γ, δ, and m fixed, the operator, J , can be extended– with respect to the set,
K(γ, δ,m)– to a function on all of C1,γ(Rd), instead of just K(γ, δ,m) ⊂ C1,γ, and this extension is
still Lipschitz and enjoys the GCP. Specifically, if we define

J̃K(γ,δ,m) : C1,γ(Rd)→ C0(Rd) via J̃K(γδ,m)(f, x) = min
g∈K(γ,δ,m)

max
`∈[∂j]K(γ,δ,m)

(j(g) + `((τxf)− g)) ,

(7.9)

then J̃ is Lipschitz, J̃ = J on K(γ, δ,m), and J̃ enjoys the GCP.

Corollary 7.8. If x is fixed, γ, δ,m are given, and f is m-C1,γ(x), then J̃K(γ,δ,m)(f, x) is classically
defined via (7.9).

Proof of Corollary 7.8. If f is m-C1,γ(x), then this means that there are two functions, f+ and f−,
such that f± ∈ C1,γ(Rd) and for all y, f−(y) ≤ f(y) ≤ f+(y), with f−(x) = f(x) = f+(x). (Note,
these f± would of course depend on the parameter, r, in Definition 5.2, but that is irrelevant.) Hence,
the formula in (7.9) holds classically by Proposition 7.4 and the estimate on µ that appears in (7.3).

�
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An important consequence of the Assumption 7.1-(vi) is that it shows that cij ≤ 0, which we state
and prove here.

Proposition 7.9. If J is as in Assumption 7.1 and M+
J,K(γ,δ,m) is the extremal operator defined in

(7.8), then

∀ x ∈ Rd, M+
J,K(γ,δ,m)(1, x) ≤ 0.

As a consequence, we see that necessarily for all L ∈ Linv in (7.5), we have c ≤ 0.

Proof. By the translation invariance of M+
J,K(γ,δ,m), it suffices to show that

M+
J,K(γ,δ,m)(1, 0) ≤ 0.

Let us write m0 to denote the Lipschitz functional m0(f) = M+
J,K(γ,δ,m)(f, 0) (the Lipschitz character

is part of Proposition 7.6), and recall that

m0(f) = M+
J,K(γ,δ,m)(f, 0) = max

`∈[∂j]K(γ,δ,m)

`(f) where j is j(f) = J(f, 0).

Assumption 7.1-(vi) will show that all ` ∈ [∂j]K(γ,δ,m) will have a sign for `(1). Indeed, if f ∈ C1,γ ,
then by Assumption 7.1-(vi), we have

lim sup
s→0+

j(f + s · 1)− j(f)

s
≤ 0.

From Definition 2.6 for [∂j]K(γ,δ,m), we conclude that

if ` ∈ [∂j]K(γ,δ,m), then `(1) ≤ 0.

Thus, via the definition of M+
J,K(γ,δ,m) in (7.8), we see that M+

J,K(γ,δ,m)(1, 0) = m0(1) ≤ 0, as we wanted.

�

Finally, to end this section, we will mention how the results of Sections 5 and 6 ensure that the
one-and-two phase operators are covered by the assumptions of this section.

Theorem 7.10. The operators, I and H, defined respectively in (5.2) and (6.5) satisfy Assumption
7.1. In the case of H, all of the constants and Lipschitz norms will depend on K(γ, δ,m,L), instead
of just K(γ, δ,m) (where L is the height of the top boundary in Section 6). Furthermore, the same is
true as well for the operators, for respectively the one-phase and two-phase evolutions:

G(I(f)) ·
√

1 + |∇f |2 and H(f) ·
√

1 + |∇f |2.

Proof. For I, this is a direct consequence of the results in Theorem 5.13, Lemma 5.6, Proposition 5.7,
Lemma 5.15, and Lemma 5.22. Hence for the map G(I(f)), this follows from the Lipschitz nature of
G. For H, this follows immediately from the Lipschitz nature of G, combined with the observation
of Lemma 6.1. Indeed, I+ already has the desired properties (as in Section 5), and by Lemma 6.1
I− does as well. Everything can be checked for H with a calculation similar to that of the proof of
Theorem 6.2.

Finally, for the cases of

G(I(f)) ·
√

1 + |∇f |2 and H(f) ·
√

1 + |∇f |2,
we note that the mapping,

f 7→
√

1 + |∇f |2,

is bounded and Lipschitz on each of the sets, K(γ, δ,m,L). This, combined with the local nature of√
1 + |∇f |2, is enough to preserve all of the assumptions listed in 7.1, as soon as I or H satisfy them

as well.
�
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8. Comparison theorem for parabolic viscosity solutions

This section is dedicated to the uniqueness and existence of viscosity solutions for the class of
fractional parabolic equations that contain those in Assumption 7.1. As we just saw in Theorem 7.10,

this contains the operators G(I(f)) ·
√

1 + |∇f |2 and H(f) ·
√

1 + |∇f |2 for the free boundary flow.

We want to emphasize that this section should be viewed as a collection of small modifications to
the arguments found in the paper of Silvestre, [57, Appendix A], for some similar integro-differential
equations. At the end of this section, we will show how a similar comparison result can be deduced
from Theorem 5.13, Lemma 5.11, and Corollary 5.24.

8.1. Using the assumptions of Section 7. In this part, we show the uniqueness for parabolic
equations governed by general operators satisfying the assumptions of Section 7. For such J that
satisfy Assumption 7.1, we prove uniqueness for{

∂tf = J(f) in Rd × (0, T ]

f(·, 0) = f0 on Rd × {0}.
(8.1)

Remark 8.1. We present all the proofs in a fashion that applies to the one-phase evolution, using

the operator, e.g. J(f) = G(I(f)) ·
√

1 + |∇f |2. This is apparent in the need to reference sets such

as K(γ, δ,m), and the dependence of arguments on the parameters, δ and m. All of these results hold

for the two-phase problem, e.g. J(f) = H(f) ·
√

1 + |∇f |2 as well, with the additional constraint that

constants and arguments will also depend upon L and K(γ, δ,m,L).

It turns out that since J is translation invariant, the viscosity solutions theory is well developed and
straightforward to implement. The key step is the regularization via the operations of inf-convolution
and sup-convolution (also known earlier as the Moreau-Yosida approximation on Hilbert spaces).
These operations were expanded upon by Lasry-Lions [50]; first utilized for uniqueness of elliptic
equations by Jensen in [44]; and improved upon by Ishii in [42]. A good demonstration of their utility
appears in the work of Jensen-Lions-Souganids [43]. As mentioned above, most of the arguments that
we need that pertain to the nonlocal terms come nearly verbatim from the work of Silvestre in [57,
Appendix A], and we will refer most of the details to that work. We begin by recognizing the fact that
for equations whose order is strictly less that 2, the inf/sup-convolution technique works even more
seamlessly than in the case of second order equations. This is due to the fact that a function with
C1,1 regularity in space is good enough to classically evaluate J . Such benefits of working with sub
and super solutions that can be evaluated classically can be seen in Caffarelli-Silvestre [12, Section 5]
and Barles-Imbert [6], as well as in [57]. For a general overview of viscosity solutions, we suggest the
User’s Guide [33], and for an introduction of these techniques in the context of parabolic equations,
we suggest the lecture notes of Imbert-Silvestre [40].

First, we must recall the definition of a viscosity solution of the parabolic equation. For our context,
this is equivalent to any of the definitions that appear in Barles-Imbert [6], Caffarelli-Silvestre [12], or
Silvestre [57].

Definition 8.2. We say that f is a viscosity subsolution of (8.1) if f is upper semi-continuous, that
inf f > 0, and f has the property that for all (x, t) ∈ Rd × (0, T ] for which there exists a function,
φ, so that for some β > 0 with γ + β < 1, φ ∈ C1,γ+β(Rd) in space and C1 in time, and for some
t > r > 0, f − φ attains a global maximum over Rd × (t− r, t], then φ must satisfy

∂tφ(x, t) ≤ J(φ, x).

We say that g is a viscosity supersolution if g is lower semi-continuous, inf g > 0, and the above
properties are replaced by g − φ attains a minimum for inf φ > 0, and

∂tφ(x, t) ≥ J(φ, x).

We say that f is a viscosity solution if f is both a subsolution and a supersolution.
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Remark 8.3. We note that we have chosen the space of test functions to have the natural regularity
in space that is associated to Assumption 7.1; this is instead of the usual C2 regularity that typically
appears in other works that use viscosity solutions for integro-differential equations.

Remark 8.4. We note that definition 8.2 is not identically the one in [57, Section 2], however, it is
equivalent, as evidenced in Barles-Imbert [6].

Thanks to the results in Section 7, it is easy to show that the definition of viscosity solutions extends
to a class of functions with less regularity in space, namely test functions that, for some β > 0 with
γ+β < 1, are punctually C1,γ+β in space at the point of contact will produce the same set of solutions.

Lemma 8.5. (This is the analog of the result of, e.g. [12, Lemma 4.3].) If f is a viscosity subsolution
of (8.1) and (x, t) ∈ Rd × (0, T ) is a point such that f − φ attains a maximum at (x, t), for some φ
that is punctually C1,γ+β(x) in space and C1 in time, with β > 0 and γ + β < 1, then there exists a

choice of δ0 small enough and m0 large enough (depending on φ), so that J̃K(γ,δ0,m0)(φ, x) is defined
classically and

∂tφ(x, t) ≤ J̃K(γ,δ0,m0)(φ, x).

(J̃ is defined in (7.9) and its appearance is because it is not required that φ is in the set, K(γ, δ0,m0).)
The analogous result holds for g that are supersolutions and for those φ that also additionally satisfy
inf φ > 0. (The inequality also holds for δ < δ0 and m > m0.)

Proof. As we mentioned in the statement of the lemma, this is basically the result that is presented in
[12, Lemma 4.3]. The proof is also very similar. We provide some details for the sake of readability.

First of all, the well defined nature of J̃K(γ,δ,m)(φ, x) is a consequence of Corollary 7.8, from which it
is useful to note does not require the extra γ + β regularity of φ at x. The extra regularity is required
to ensure that J̃K(γ,δ,m)(φ, x) actually obeys the correct inequality.

We observe that by the assumption on φ, there exist functions, f+, f−, both in C1,γ+β(Rd), and
that satisfy

∀ y ∈ Rd, f−(y) ≤ φ(y) ≤ f+(y), and f−(x) = φ(x) = f+(x).

For each r > 0, we can define the function, φr, as

φr(y) =

{
f+(y) if y ∈ Br(x)

φ(y) otherwise.

Furthermore, we note that we also have the ordering

f− ≤ φ ≤ φr ≤ f+,

and that

∇f−(x) = ∇φ(x) = ∇φr(x) = ∇f+(x).

Finally, we can assume without loss of generality that

∂tφ(x, t) = ∂tf
+(x, t).

The definition of viscosity solution shows that

∂tφ(x, t) = ∂tf
+(x, t) ≤ J(f+, x).

Now we can use Corollaries 7.7 and 7.8, as well as the relevant extremal operators to see that since
there exists some δ0 and m0 so that f+ ∈ K(γ, δ0,m0), which we simply call K(γ, δ0,m0) = K,

J(f+, x) = J̃K(f+, x) ≤ J̃K(φr, x) +M+
J,K(f+ − φr, x)

≤ J̃K(φ, x) +M+
J,K(φr − φ, x) +M+

J,K(f+ − φr, x).

Again, we recall that all of the operators involving J̃K and M+
J,K are well defined on each of these

functions, as they are all punctually C1,γ(x). The only question now is whether or not the last two
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terms vanish as r → 0. This is where the slightly higher regularity is used. Indeed, because the set,
K, is now fixed, and thanks to the bounds in Theorem 7.5, as well as the definition of M+

J,K, we see
that all of these terms include a measure µ and an integral that are dominated by∫

Br

Cφ |y|1+γ+β µ(dy),

where Cφ is a constant depending the fact that φ ∈ C1,γ+β(x). Furthermore, we know that M+
J,K is a

max over a family of these µ, all of the µ (arising from the set, [J ]K), satisfy the uniform bound (7.3).
For simplicity, let us call meas(K) to be the set of all measures, µ, so that there exists ` ∈ [J ]K so
that µ is the corresponding measure for ` as in Proposition 7.4. Hence, the remaining terms above,
that depend on r, are all bounded by∫

Br

Cφ |y|1+γ+β µ(dy) ≤ Cφrβ sup
µ∈meas(K)

∫
Rd

min{|y|1+γ , 1}µ(dy) ≤ C2 · Cφ · rβ.

Hence, taking r → 0 shows that M+
J,K(φr − φ) +M+

J,K(f+ − φ)→ 0, and this finishes the claim of the
lemma.

�

Following either [40] or [57], we see that the inf and sup convolutions that are appropriate for
parabolic equations are the following:

φε(x, t) = sup
y∈Rd,s∈[0,∞)

φ(y, s)− 1

2ε
(t− s)2 − 1

2ε
|x− y|2 (8.2)

φε(x, t) = inf
y∈Rd,s∈[0,∞)

φ(y, s) +
1

2ε
(t− s)2 +

1

ε
|x− y|2. (8.3)

We will also need to know how the family of operators as in Assumption 7.1 operate on rescaled
versions of smooth bump functions. In particular, it is important to know that the following.

Lemma 8.6. If Φ and ΦR are the smooth functions defined as

Φ(x) =
|x|2

1 + |x|2
, and ΦR(x) = Φ

( x
R

)
,

then, for a fixed J , given any δ > 0, m > δ, ρ > 0, there exists R > 1, with R = R(J, ρ, δ,m), so that

sup
x∈Rd

M+
J,K(γ,δ,m)(ΦR, x) ≤ ρ.

Proof of Lemma 8.6. First, for a fixed t > 1 to be made precise later, we collect a few facts about ΦR:

0 ≤ ΦR(x) ≤ 1 and ‖∇ΦR‖L∞ ≤
C

R

|ΦR(x+ h)− ΦR(x)− 1B1(h)∇ΦR(x) · h|1B1(h) ≤ C |h|2

R2
,

|ΦR(x+ h)− ΦR(x)− 1B1(h)∇ΦR(x) · h|1Bt\B1
(h) ≤ Ct

R
|ΦR(x+ h)− ΦR(x)− 1B1(h)∇ΦR(x) · h|1Rd\Bt(h) ≤ 1.

Now, using the uniform estimates on the Lévy measures, µ, we can first choose t large enough according
to Theorem 7.5, so that, uniformly across [∂j]K(γ,δ,m),∫

Rd\Bt
|ΦR(x+ h)− ΦR(x)− 1B1(h)∇ΦR(x) · h|µ(dh) ≤ ρ

3
.
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Next, given this t, we can choose R large enough so that uniformly across b from [∂j]K(γ,δ,m)

b · ∇ΦR ≤
ρ

3

and ∫
Bt

|ΦR(x+ h)− ΦR(x)− 1B1(h)∇ΦR(x) · h|µ(dh) ≤ ρ

3
.

Finally, thanks to Proposition 7.9, we see that for any of the constants, c, appearing in (7.5), we have

cΦR(x) ≤ 0.

Hence, by the definition of M+
J,K(γ,δ,m) we have obtained the desired inequality.

�

The previous lemma allows us to construct a smooth strict supersolution, that also acts a bump
function.

Lemma 8.7. Given any δ > 0, m > δ, ρ > 0, and C > 0 there exists a choice of R = R(J, ρ, δ,m) so
that for all h > 0,

∀ (x, t) ∈ Rd × [0, T ], Ψ(x, t) = C + hΦR(x) + hρt,

is a classical, strict super solution of

∂tΨ > M+
JK(γ,δ,m)(Ψ).

Proof of Lemma 8.7. This is a direct calculation, but it is essential to invoke Proposition 7.9 to en-
sure the desired inequality. In particular, Proposition 7.9, or rather that c ≤ 0 in the definition of
M+
J,K(γ,δ,m), show that since C ≥ 0,

M+
J,K(γ,δ,m)(C + hΦR) ≤ hM+

J,K(γ,δ,m)(ΦR).

Thus, with ρ given, we can invoke Lemma 8.6 with (ρ/2) to get the desired inequality. �

The first comparison result is for subsolutions of an extremal equation. Although we do not invoke
this result in the same way as in [57], we think it is useful to have as a tool. The result that is truly
essential to this work is the next one, which is Proposition 8.9.

Lemma 8.8. If δ > 0, m > δ are fixed, and w : Rd × [0, T ]→ R is a bounded, upper semi-continuous
function such that, in the viscosity sense

∂tw ≤M+
J,K(γ,δ,m)(w),

then, sup
Rd×[0,T ]

w+ ≤ sup
Rd

w+(·, 0)

Proof. First, we will provide the proof when supRd w(·, 0) = 0. Given the result of Lemma 8.7, we see
that the proof of [57, Lemma 3.3] applies directly. Indeed if we assume, for the sake of contradiction,
supRd×[0,T ]w > 0, then for some choice of C ≥ 0, and h > 0, w−Ψ (where Ψ is as in Lemma 8.7) will
attain a global max for t > 0. The definition of viscosity solution applied to Ψ as a test function gives
a contradiction.

Next, if we do not necessarily assume that supRd w(·, 0) = 0, we can replace w by the function,

w̃ = w − sup
Rd

w(·, 0).

Thus, if c = supRd w(·, 0) ≥ 0, we see that w = w̃ + c, and so in the viscosity sense, ∂tw = ∂tw̃.
Furthermore, since c ≥ 0, by Assumption 7.1 (vi) and Proposition 7.9, in the viscosity sense,

M+
J,K(γ,δ,m)(w) = M+

J,K(γ,δ,m)(w̃ + c) ≤M+
J,K(γ,δ,m)(w̃).
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Hence, in the viscosity sense,

∂tw̃ = ∂tw ≤M+
J,K(γ,δ,m)(w) ≤M+

J,K(γ,δ,m)(w̃),

and the first case is applicable.
�

Proposition 8.9. If f, g : Rd × [0, T ] → R are bounded and, with for some δ > 0, f, g ≥ δ, are
respectively a sub and a supersolution, in the viscosity sense, of

∂tu = J(u),

and f(x, 0) ≤ g(x, 0) for all x, then,

f(x, t) ≤ g(x, t) ∀ (x, t) ∈ Rd × [0, T ].

Proof of Proposition 8.9. We first note that thanks to the definition of viscosity solution and the
translation invariance of J , that if we define the sup-convolution, f ε, and the inf-convolution, gε, then
the following two inequalities are satisfied in the viscosity sense:

∂tf
ε ≤ J(f ε), and ∂tgε ≥ J(gε).

We let ε ∈ (0, 1) be fixed. We will assume for the sake of contradiction that there exists a t∗ ∈ (0, T )
such that

0 < m0 = sup
(x,t)∈Rd×[0,T ]

(f(x, t)− g(x, t)) = sup
x∈Rd

(f(x, t∗)− g(x, t∗)).

Now, since ε is fixed, and m0 is given, it is possible to invoke Lemma 8.7 with m = cε−1 (and
C = cm0), in order to ensure the existence of Ψ such that the following inequality holds classically for
all (x, t) ∈ Rd × [0, T ]:

∂tΨ > M+
J,K(γ,δ/2,cε−1)

(Ψ).

Furthermore, by construction, C can be chosen so that there exists (xε0, t
ε
0) ∈ Rd × (0, T ] so that

f ε − gε ≤ Ψ, and (f ε − gε)(xε0, tε0) = Ψ(xε0, t
ε
0).

By definition, both f ε and −gε are semi-convex in space and time. Thus, since f ε−gε is touched from
above by Ψ at (xε0, t

ε
0), we have that f ε, gε ∈ (cε−1)-C1,1(xε0). This also implies f ε, gε ∈ (cε−1)-C1,γ(xε0),

and that ∂tf
ε, ∂tgε, ∇f ε, ∇gε all exist at (xε0, t

ε
0). (Here we have implicitly used that without loss of

generality, Ψ ∈ (cε−1)-C1,1(xε0)) Thus, by Lemma 8.5 and Corollary 5.12, we see that the equations
hold classically for f ε and gε. Furthermore, by Proposition 7.6 and Lemma 8.5, we see that classically,
(for c = ‖f‖L∞ + ‖g‖L∞)

∂tf
ε − ∂tgε ≤ J̃K(γ,δ,cε−1)(f

ε, xε0)− J̃K(γ,δ,cε−1)(gε, x
ε
0)

≤M+
J,K(γ,δ,cε−1)

(f ε − gε, xε0) ≤M+
J,K(γ,δ,cε−1)

(Ψ, xε0),

where the last inequality resulted from the fact that M+
J,K(γ,δ,cε−1)

enjoys the GCP. Since at (xε0, t
ε
0)

we know that ∂t(f
ε − gε) = ∂tΨ, this contradicts the fact that

∂tΨ > M+
J,K(γ,δ/2,cε−1)

.

Thus, we can conclude that for each ε fixed, we know that

∀ (x, t) ∈ Rd × [0, T ], f ε(x, t) ≤ gε(x, t).

Taking ε→ 0 yields the result of the proposition.
�
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8.2. Existence. The method of existence will, again, follow [57, Appendix A] (which comes from
Ishii’s adaptation of Perron’s method, e.g. [41], [42], or [33]), provided we can construct certain
barrier functions. Indeed, nearly the same barriers from [57] will work, with a minor modification.

Assume that f0 : Rd → R is uniformly continuous and f0 ≥ δ. First, we construct two smooth
functions to serve as lower and upper initial data. Assume that b : Rd → R, b is smooth, 0 ≤ b ≤ 1,
b(0) = 1, and support(b) ⊂ B1.

Fix x0. We will produce lower and upper barriers for f0 at the point x0. Define, for ρ > 0,

bρ(x) := b

(
x− x0

ρ

)
.

We claim that given any ε > 0, we can produce a choice of ρ so that the following functions will trap
f0. We define the upper and lower barrier’s for f0 at x0 as

U0(x) := bρ(x)f0(x0) + (1− bρ(x)) sup
Rd

(f0) + ε

L0(x) := bρ(x)f0(x0) + (1− bρ(x)) inf
Rd

(f0)− ε.

Specifically, given ε > 0, we can find a ρ > 0 so that

∀ x ∈ Rd U0(x) ≥ f0(x) and L0(x) ≤ f0(x).

With these barriers in hand, we see that Perron’s method for viscosity solutions applies to the
equation (8.1). We summarize this as

Theorem 8.10. If f0 is uniformly continuous and bounded on Rd, then there exists a unique viscosity
solution, f , that solves (8.1).

8.3. Comparison using the free boundary operators directly. In this part, we show how the
previous results indeed do work, with basic modifications, under the assumptions of the free boundary
operators, I and H, above. These arguments will be valid regardless of whether or not one has proved
that I has an integro-differential representation as in Section 7.

Theorem 8.11. If I is as in (5.2) or H as in (6.5), f, g : Rd× [0, T ]→ R are bounded and, for some
δ > 0, f, g ≥ δ, and for H also satisfy f, g ≤ L− δ, are respectively a sub and a supersolution, in the
viscosity sense, of

∂tu = G(I(u)) ·
√

1 + |∇u|2, or ∂tu = H(u) ·
√

1 + |∇u|2

and f(x, 0) ≤ g(x, 0) for all x, then,

f(x, t) ≤ g(x, t) ∀ (x, t) ∈ Rd × [0, T ].

The proof proceeds nearly identically to the arguments in Proposition 8.9 and Lemma 8.8, except
that we don’t invoke the extremal operator, M+

J,K(γ,δ,m), and we use Corollary 5.24 instead of Lemma

8.7.
First we will demonstrate the case for the equation for the one phase case, G(I(u)). To this end,

we again take f ε and gε to be the sup-convolution and inf-convolution of f and g. We assume, for the
sake of contradiction, that supRd×[0,T ] f

ε − gε > 0. As above, this means that for some C ≥ 0, ρ > 0,

and h > 0, there will exist x̂ and t̂ > 0 such that f ε − gε − Ψ attains a zero maximum at (x̂, t̂) (Ψ
is taken to be as in Lemma 8.7). Furthermore, we can choose the parameters C, ρ, h so that we also
maintain

δ ≤ gε + Ψ, and f + Ψ ≤ L− δ

2
,

which is a technical requirement for applying Corollary 5.24; the restriction relative to f ε and Ψ is
only relevant for the case of the operator, H, which we treat second.

This means that at (x̂, t̂), both f ε and gε have classical derivatives with respect to both x and t
at (x̂, t̂) and also that I(f ε, x̂), I(gε, x̂) are classically defined. We can use the Corollary 5.24 to get
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a contradiction. Indeed, assume that s > 0 is generic. We see that by the Lipschitz nature of G and√
1 + |∇f |,

G(I(gε + Ψ))

√
1 + |∇gε +∇Ψ|2 −G(I(gε))

√
1 + |∇gε|2

≤ C‖
(√

1 + |∇gε +∇Ψ|2
)
‖L∞ · |I(gε + Ψ)− I(gε)|+ C‖G(I(gε))‖L∞ |∇Ψ|

Hence for a sufficiently large R, using the definition of Ψ and Corollary 5.24, we can force the right
hand side to be controlled by s. We note that this choice of R will depend upon ε, δ, and m, which
is suitable since ε is fixed (as in the proof of Proposition 8.9). Thus, at (x̂, t̂) we first use the GCP,
followed by the previous inequality to obtain

∂t(gε + Ψ) ≤ ∂tf ε ≤ G(I(f ε, x̂))

√
1 + |∇f ε(x̂)|2 ≤ G(I(gε + Ψ, x̂))

√
1 + |∇gε(x̂) +∇Ψ(x̂)|2

≤ G(I(gε, x̂))

√
1 + |∇gε(x̂)|2 + s ≤ ∂tgε + s.

(Here, we note the first inequality is only to include the case that t̂ = T , otherwise if t̂ < T , we would
have equality.) In other words, this implies that

hρ ≤ s.

Since any s > 0 is admissible, once ρ and h have been fixed, we see, by choosing s = 1
2hρ, that this

gives a contradiction.
For the case of H(u) = G(I+(u), I−(u)), we would give nearly the same proof, except that we need

to use Corollary 5.24 twice, and we follow the argument for Theorem 6.2. Here is a sketch of the
argument, following as above, and the notation for f̃ , F̃2, etc... are as that preceding Lemma 6.1. The
term we need to focus on is

H(f ε, x̂)−H(gε, x̂).

Indeed, we have

H(f ε, x̂)−H(gε, x̂) ≤ Λ0(I+(f ε, x̂)− I+(gε, x̂))+ + Λ0(−IF̃2
(L− g̃ε, x̂) + IF̃2

(L− f̃ ε, x̂))+.

At this point, the first term is handled exactly as above, using the fact that f ε is touched from above
at x̂ by the function gε + Ψ. For the second term, we use the fact that our assumptions on f ε, gε, and
Ψ, are such that

(L− f̃ ε) + (−Ψ̃) is touched from below by (L− g̃ε) at x̂.

Furthermore, the requirement that f + Ψ ≤ L − δ
2 ensures that both (L − f̃ ε) and (L − f̃ ε) + (−Ψ̃)

are in K∗(γ, δ/2,mε) (as f ε is semi-convex, so −f ε is semi-concave). By the GCP,

IF̃2
((L− f̃ ε) + (−Ψ̃), x̂) ≥ IF̃2

(L− g̃, x̂),

and by Corollary 5.24,

IF̃2
(L− f̃ ε, x̂)− IF̃2

((L− f̃ ε) + (−Ψ), x̂) ≤ s.

These two inequalities are enough to finish the proof as in the first case.

9. Free boundary viscosity solutions

In this section we study various notions of viscosity solutions of free boundary problems like (1.1).
Because we have in mind a one-to-one correspondence between viscosity solutions of the free boundary
problem and viscosity solutions of a parabolic equation, we will introduce a definition of viscosity
solution that is different from the standard one – as presented in, e.g. [5], [14], [46], [47]. We will then
show that our definition contains the existing ones when the assumptions overlap.
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9.1. Viscosity solutions for the free boundary evolution (1.1). By a test interface in [a, b],
we shall mean the following: a smooth hypersurface in S ⊂ Σ0 × [a, b] such that each time slice S(t)

separates Σ0 (Σ0 = Rd+1
+ or Σ0 = Rd × [0, L]) into two connected components, that is Σ0 \ S(t) =

S(t)+ ∪ S(t)− where S(t)+ and S(t)− are open sets, S(t) is a positive distance away from ∂Σ0, and

Γ0 ⊂ S(t)+ (one phase case),

Γ0 ⊂ S(t)+, ΓL ⊂ S(t)− (two phase case).

Given a test interface S in [a, b], we define US : Σ0 × [a, b] → R as the function which for each time
t ∈ [a, b] is the unique solution to one of the following Dirichlet problems; in the two-phase case
(Σ0 = Rd × (0, L)), it solves the equation,

F1(D2US ,∇US) = 0 in S+,
F2(D2US ,∇US) = 0 in S−,

US = 0 on S,
US = −1 on ΓL,
US = 1 on Γ0,

(9.1)

and in the one-phase case (Σ0 = Rd+1
+ ), it solves the equation, F (D2US ,∇US) = 0 in S+,

US = 0 on S,
US = 1 on Γ0,

(9.2)

Let us recall the definition of classical subsolutions and supersolutions.

Definition 9.1. Let U : Σ0×[a, b]→ R. This function is said to be a classical subsolution (respectively
supersolution) of (1.1) if

(1) The set ∂{U > 0} is a codimension 1 differentiable submanifold of Σ0 × [a, b] such that each
time slice ∂{U > 0} ∩ Σ0 × {t} (a ≤ t ≤ b) is a codimension 1 differentiable submanifold of
Σ0, and U is twice differentiable in space and differentiable in time in Σ0 × [a, b] \ {U 6= 0}.

(2) For every fixed t, the function U = U(·, t) solves, in the viscosity sense,

F1(D2U,∇U) ≥ 0 in {U > 0} (resp. ≤),

F2(D2U,∇U) ≥ 0 in {U < 0} (resp. ≤),

and if V denotes the normal velocity of ∂{U > 0} (in the outer normal direction), then

V ≤ G(∂+
ν U, ∂

−
ν U) along ∂{U > 0} (resp. ≥).

Furthermore, U is said to be a classical solution if it is both a subsolution and a supersolution.
The definition for the one-phase is entirely analogous and we omit it.

Definition 9.2. A function U is said to be touched from above at (X0, t0) by S if S is a test interface
in [t0 − τ, t0] for some τ > 0 such that

{U > 0} ∩ {t0 − τ ≤ t ≤ t0} ⊂ S+ and (X0, t0) ∈ ∂{U > 0} ∩ S.

The notion of viscosity solution we will be using is the following.

Definition 9.3. A viscosity subsolution (respectively supersolution) of (1.1) in [a, b] is an upper semi-
continuous function (resp. lower semi continuous function)

U : Σ0 × [a, b]→ R,

which is required to have the following properties. It satisfies the pointwise bounds

U ≤ 1 (resp. U ≥ 1) on Γ0, U ≤ −1; (resp. U ≥ −1) on ΓL (two-phase case),

U ≤ 1 (resp. U ≥ 1) on Γ0 (one-phase case);
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and satisfies the following relations in the viscosity sense: in the two-phase case they are

F1(D2U,∇U) ≥ 0 in {U > 0}0 (resp. ≤),

F2(D2U,∇U) ≥ 0 in {U < 0}0 (resp. ≤),

and in the one-phase case they are

F (D2U,∇U) ≥ 0 in {U > 0}0 (resp. ≤).

Last but not least, for any test interface S touching U from above at (X0, t0) ∈ ∂{U > 0} we have

VS(X0, t0) ≤ G(∂+
ν US , ∂

−
ν US)(X0, t0) (resp. ≥), (two-phase case),

VS(X0, t0) ≤ G(∂+
ν US)(X0, t0) (resp. ≥), (one-phase case).

It should be useful to discuss the notion of viscosity solutions between what we have proposed
above and the definition given by Kim in [46] for the one-phase Hele-Shaw problem. Here we recall
the definition in [46].

Definition 9.4. A non-negative upper semicontinuous function U : Σ0 × [0,∞) → R is said to be a
viscosity subsolution to the one-phase Hele-Shaw problem, if

(i) U = U0 at t = 0, U ≤ 1 on Γ0;

(ii) {U > 0} ∩ {t = 0} = {U(X, 0) > 0};
(iii) for each T ≥ 0 the set {U > 0} ∩ {t ≤ T} is bounded and

(iv) for every Φ ∈ C2,1
x,t that has a local maximum of

U − Φ in {U > 0} ∩ {t ≤ t0} ∩Q at (X0, t0),

(a) −∆Φ(x0, t0) ≤ 0 if U(X0, t0) > 0,
(b) min(−∆Φ, ∂tΦ− |∇Φ|2)(X0, t0) ≤ 0, if (X0, t0) ∈ ∂{U > 0}, U(X0, t0) = 0.

A non-negative lower semicontinuous function U : Σ0 × [0,∞) → R is said to be a viscosity superso-
lution to the one-phase Hele-Shaw problem, if

(i) U = U0 at t = 0, U ≥ 1 on Γ0;

(ii) for every Φ ∈ C2,1
X,t that has a local minimum of

U − Φ in {U > 0} ∩ {t ≤ t0} ∩Q at (x0, t0),

(a) −∆Φ(x0, t0) ≥ 0 if (X0, t0) ∈ {U > 0},
(b) max(−∆Φ, ∂tΦ− |∇Φ|2)(X0, t0) ≥ 0, if (X0, t0) ∈ ∂{U > 0}, |∇Φ(X0, t0)| 6= 0 and

{Φ > 0} ∩ {U > 0} ∩B 6= ∅

for any ball B centered at (X0, t0).

Then, U is a viscosity solution if it is both a viscosity supersolution and its upper semicontinuous
envelope U∗ is a viscosity subsolution.

Lemma 9.5. For the one-phase Hele-Shaw problem, if U is a viscosity subsolution (supersolution) in
the sense of Definition 9.4 then it is a viscosity subsolution (supersolution) in the sense of Definition
9.3.

Proof. Let U be a solution in the sense of Definition 9.4. Fix (X0, t0) ∈ ∂{U > 0} and let S be a test
interface in [t0− τ, t0] touching U from above at (X0, t0), for some small τ > 0. Let US be as given by
(9.2) with F (D2U,∇U) = ∆U .

Fix ε > 0 and let Φ̃ε : Σ0 × [t0 − τ, t0] be the function given by
∆Φ̃ε + ε = 0 in S+,

Φ̃ε = 0 on S,

Φ̃ε = 1 on Γ0.
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In particular, Φ̃ε is superharmonic in S+ and that the following pointwise limits hold

lim
ε→0

Φ̃ε = US in S+, lim
ε→0

∂+
n Φ̃ε = ∂+

n US on S.

On the other hand, it is clear that Φ̃ε is C2,1 in S+. Let Φε be a smooth extension of Φ̃ε to Σ0×[t0−τ, t0].
By construction, for any ε we have that U − Φε has a local maximum at some point (X0, t0) ∈ S

(seen as a function in {U > 0} ∩ {t ≤ t0}). Applying Definition 9.4, it follows that at (X0, t0) at least
one of the following inequalities must hold

∆Φε ≥ 0 or ∂tΦε ≤ |∇Φε|2.

Since ∆Φ = −ε < 0 along S, we conclude that

∂tΦε ≤ |∇Φε|2 at (X0, t0), and hence VS(X0, t0) ≤ ∂+
n Φε(X0, t0).

Letting ε→ 0, we conclude that

VS(X0, t0) ≤ ∂+
n US(X0, t0).

and we conclude that U is a solution in the sense of Definition 9.3. �

Remark 9.6. The use of a slightly superharmonic function Φε instead of the harmonic function
US is a type of argument familiar from the theory of viscosity solutions when dealing with boundary
conditions, cf. [38, Proposition A.2] where the Neumann condition for a non-linear problem is studied.
A similar situation is seen in free boundary problems, see for instance the discussion following [34,
Definition 2.5].

It will be necessary to understand how ∂±n US varies with vertical shifts of S, and accordingly we
introduce some notation for such shifts. Given a test interface S and h ∈ R, we define

Sh := {X = (x, xd+1) | (x, xd+1 − h) ∈ S}. (9.3)

In other words Sh is the surface resulting from shifting S in the upward direction by h (if h < 0, then
Sh is S shifted down by |h|). The following Lemma is, essentially, an extension of Lemma 5.15 with a
slightly different set up that will be convenient in the next subsection.

Lemma 9.7. Let S be a test interface. There is a constant C = CS such that for all sufficiently small
h, and any (X, t) ∈ Sh (Sh as in (9.3)), we have

|∂+
n USh(X − hed+1, t)− ∂+

n US(X, t)| ≤ C|h|.

Here, US and USh are the functions given by (9.1).

Remark 9.8. Using an argument analogous to that in Lemma 6.1, one can use the one-phase problem
estimate in Lemma 9.7 to obtain the analogous bound for the two-phase problem

|G(∂+
n USh , ∂

−
n USh)−G(∂+

n US , ∂
−
n US)| ≤ CG,S |h|.

Proof. We shall consider only h such that |h| is no larger than half the distance from S to {xd+1 = 0},
and we focus solely on the case h > 0 (the proof is similar for h < 0). As in Lemma 5.15, we shall

compare US to a vertical shift of USh . Thus, we consider Ũ defined by

Ũ(X, t) := USh(X − hed+1, t), defined in S+ ∩ {(X, t) | X = (x, xd+1), xd+1 ≥ h}.

Observe that Ũ = US = 0 on S. On the other hand, taking into account that Ũ ≡ 1 on {xd+1 = h},
that US ≡ 1 on {xd+1 = 0}, and the available Lipschitz bound for US in {0 ≤ xd+1 ≤ h}, we have

|Ũ − US | ≤ CSh on {xd+1 = h}.

Then, applying the maximum principle in S+ \ {0 ≤ xd+1 ≤ h}, it follows that

|Ũ − US | ≤ CSh in S+ \ {0 ≤ xd+1 ≤ h}.
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Then, using that Ũ − US = 0 on S and applying Proposition 5.8, it follows that for some constant C
depending on S (as well as the dimension and the ellipticity of F ),

|∂+
n (Ũ − US)| ≤ Ch, on S.

Since ∂+
n Ũ(X, t) = ∂+

n USh(X − hed+1, t), the Lemma is proved. �

9.2. Correspondence between viscosity solutions of the free boundary evolution and vis-
cosity solutions of the parabolic equation. In this subsection, we are going show that under
the graph assumption for ∂{U > 0}, viscosity solutions for the free boundary problem correspond to
viscosity solutions for the parabolic equations.

First, we show a viscosity solution to the parabolic equation yields a viscosity solution to the free
boundary problem (in the sense of Definition 9.3). We recall for the sake of convenience that in this
level set context, when Uf solves (1.1), the equation for the normal velocity for Uf becomes

∂tUf = G(∂+
n Uf , ∂

−
n Uf ) |∇Uf | ;

and for the function f , it is equivalent to

∂tf = G(I+(f), I−(f)) ·
√

1 + |∇f |2. (9.4)

(We recall that I± are defined in Section 6)
The first relationship between the two different notions of solution will be made under and additional

assumption that f is Lipschitz. Then the next lemma will remove this assumption.

Lemma 9.9. If f is a globally Lipschitz viscosity subsolution (respectively supersolution) of the equa-
tion (9.4) in Rd × [a, b], then Uf is a viscosity subsolution (resp. supersolution) in Σ0 × [a, b] of the
evolution (1.1).

Proof. Let (X0, t0) ∈ Γf and let S be a test interface in [t0− δ, t0] touching Uf from above at (X0, t0).
We first need to reduce to the case in which there is an intermediate test interface that is a graph of
some function over Rd. We claim there is some φ such that Uf ≤ Uφ ≤ US . For ε > 0 define φε

φε(x, t) := sup
{
Ph,x′,t′(x, t) | (h, x′, t′) s.t. DPh,x′,t′ ⊂ {US > 0}

}
.

where

Ph,x′,t′(x, t) := h− 1
2ε |x− x

′|2 − 1
2ε |t− t

′|2.
(For convenience, we recall that the notation for the set DPh,x′,t′ appears in (1.4).) It is clear that

Dφε ⊂ {US > 0}. Therefore, applying the comparison principle yields

Uφε ≤ US everywhere, and Uφε = US on Γφε ∩ S.
The interface ∂{US > 0} is smooth and touches Γf at (X0, t0), since f is Lipschitz, the normal to
∂{US > 0} cannot be orthogonal to ed+1. This means that if ε is chosen sufficiently small (depending
on the smoothness of S) then there is some x0 ∈ Rd such that

(X0, t0) ∈ Γφε ∩ ∂{US > 0}, and X0 = (x0, φ
ε(x0, t0)).

In particular, for such ε we have G(∂+
n US , ∂

−
n US) ≥ G(∂+

n Uφε , ∂
−
n Uφε) and hence V ε ≥ V at this

contact point (where V ε is the normal velocity of ∂{Uφε > 0}). Moreover, from the construction of φε

and the fact that Uf ≤ US , it follows that

f(x, t) ≤ φε(x, t) and f(x0, t0) = φε(x0, t0).

(One can see this from the fact that choosing h = f(x, t) gives that Ph,x′,t′ ≥ f ε, where f ε is the
sup-convolution of f , so f ≤ f ε ≤ φε.) Since φε is pointwise C1,1 at (x0, t0) and f is a viscosity
subsolution of (9.4), it follows that (cf. Lemma 8.5)

∂tφ
ε ≤ G(I+(φε), I−(φε)) ·

√
1 + |∇φε|2, at (x0, t0).
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Recalling the level set formulation as it pertains to the defining function that is Φ(X, t) = f(x, t)−xd+1,
we see that as the set ∂{Uφε > 0} = Γφε , the normal velocity V ε is

∂tφ
ε√

1 + |∇φε|2
= V ε.

In other words, in light of the definitions of I±, we see that

V ε ≤ G(∂+
n Uφε , ∂

−
n Uφε) at (X0, t0).

After combining all of the above arguments, we have established that

V ≤ V ε ≤ G(∂+
n Uφε , ∂

−
n Uφε) ≤ G(∂+

n US , ∂
−
n US) at (X0, t0).

This shows that Uf is a viscosity subsolution of the free boundary flow.
If f is a supersolution, the argument is similar, so we only highlight some of the steps: suppose now

the test interface S touches Uf from below at a free boundary point (X0, t0), then for ε > 0 we define
φε by

φε(x, t) := inf
{
Qh,x′,t′(x, t) | (h, x′, t′) s.t. {US > 0} ⊂ DQh,x′,t′

}
,

where

Qh,x′,t′(x, t) := h+ 1
2ε |x− x

′|2 + 1
2ε |t− t

′|2.
As before, from the construction of φε one can see that ∂{US > 0} ⊂ Dφε . The comparison principle
then says that

US ≤ Uφε everywhere, and Uφε = US on Γφε ∩ S.
The fact that f is Lipschitz and the smoothness ∂{US > 0} means that the normal to ∂{US > 0} at
the contact point cannot be perpendicular to ed+1. It follows that for all sufficiently small ε there is
a x0 ∈ Rd such that X0 = (x0, φε(x0, t0)) and

φε(x, t) ≤ f(x, t) and φε(x0, t0) = f(x0, t0).

Arguing as in the case of a subsolution, one arrives at

V ≥ G(∂+
n US , ∂

−
n US) at (X0, t0).

�

Now we can prove the same result, but without a Lipschitz assumption on f .

Lemma 9.10. If f is a viscosity subsolution (respectively supersolution) of (9.4) in Rd × [a, b], then
Uf is a viscosity subsolution (resp. supersolution) of (1.1) in Σ0 × [a, b].

Proof. Let f be a viscosity subsolution of the problem in Rd× [a, b]. Let ε > 0 be appropriately small
and define the sup-convolution f ε; we see f ε is still a viscosity subsolution and it is also a Lipschitz
continuous function. By Lemma 9.9, it follows that Ufε is a viscosity subsolution of the free boundary
problem for every ε > 0.

Let S be a test interface touching Uf from above at (X0, t0), X0 = (x0, f(x0, t0)). For each suffi-
ciently small ε > 0 there is hε ∈ R such that (see (9.3)) Shε touches fε from above at a point of the
form (Xε, tε) ∈ Shε , Xε = (xε, fε(xε, tε)). Moreover, the (Xε, tε) and hε can be chosen so that

lim
ε→0

(Xε, tε) = (X0, t0), lim
ε→0

hε = 0. (9.5)

Then, as noted above Ufε is a viscosity subsolution, and it follows that

∂tVShε (Xε, tε) ≤ G(∂+
n UShε (Xε, tε)).

On the other hand, by Lemma 9.7 (and Remark 9.8 for the two-phase case),

|∂+
n US(Xε, tε)− ∂+

n UShε (X̃ε, tε)| ≤ Chε, X̃ε := Xε − hεed+1,
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and it follows that

∂tVS(X̃ε, tε) ≤ G(∂+
n US(X̃ε, tε)) + C|hε|.

Now, given that (X̃ε, tε)→ (X0, t0) as ε→ 0, we conclude that

∂tVS(X0, t0) ≤ G(∂+
n US(X0, t0)).

Here we note that the reason this works is that all of the calculations occur at the level of US and
UShε , which are both smooth; hence the limiting operations are straightforward. This proves Uf is a
subsolution. The argument for a supersolution is entirely analogous and we omit the details.

�

The next proposition is a basic observation about how test functions for the lower dimensional,
non-local parabolic problem yield to test functions of the free boundary problem.

Proposition 9.11. Let φ be an admissible test function touching f from above at some t0 ∈ [a, b] and
x0 ∈ Σ0. Then, Uφ touches Uf from above at (X0, t0) where X0 = (x0, f(x0, t0)).

Proof. First of all, since f ≤ φ everywhere, it follows that

Df ⊂ Dφ.

Then, from the definition of Uφ, Uf it follows that Uφ ≥ Uf on ∂Df and Uφ ≥ Uf on ∂D−f . Applying

the comparison principle to each phase yields

Uf ≤ Uφ in Df and Uf ≤ Uφ in D−f .

This means that Uf ≤ Uφ for all times t ∈ [a, t0]. Since f = φ at (x0, t0), we have Uf = Uφ = 0 at
time t0 at the point (x0, f(x0)) = (x0, φ(x0)), proving the proposition. �

Lemma 9.12. Let U be a viscosity subsolution (supersolution) of (1.1) in Σ0 × [a, b] whose free
boundary is given as the graph of some upper semi-continuous f (lower semi-continuous), then f is a
viscosity subsolution (supersolution) of (9.4) in Rd × [a, b].

Proof. Let φ be a test function which touches f from above at (x0, t0). According to Proposition 9.11,
Uφ is a test function which touches U from above at (X0, t0), where X0 = (x0, f(x0, t0)). Since U is a
viscosity subsolution, it follows that

VUφ ≤ G(∂+
n Uφ, ∂

−
n Uφ), at (X0, t0)

This implies that at (X0, t0) we have

∂tφ√
1 + |∇φ|2

≤ G(I+(φ), I−(φ)).

Since φ was arbitrary, it follows f is a viscosity subsolution. The proof for supersolutions is entirely
analogous and we omit it. �

10. Propagation of the modulus of continuity

After all of the build-up of the preceding sections, we can now demonstrate that a modulus of
continuity of initial data will be preserved by the fractional parabolic equation. This result is very
simple once the comparison theorem for viscosity solutions has been established.

Lemma 10.1. Let J be as in assumption 7.1, T > 0 and f : Rd × [0, T ] → R a continuous viscosity
solution of

∂tf = J(f) in Rd × [0, T ],

f(x, 0) = f0(x) in Rd.
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If f0 is continuous with modulus of continuity ω(·), then the same will be true of f(·, t) for all t ∈ [0, T ].
In particular, we have the estimate

|f(x, t)− f(y, t)| ≤ ω(|x− y|).

Proof. Let h ∈ Rd be fixed, and consider the function,

w(x, t) := (τhf)(x, t)− f(x, t).

By assumption,

∀ x ∈ Rd, w(x, 0) ≤ ω(|h|).
By translation invariance of J and Lemma ??, w satisfies, in the viscosity sense

∂tw ≤M+
J (w).

In light of the above, Lemma 8.8 implies that for any (x, t) ∈ Rd × [0, T ],

w(x, t) ≤ ω(|h|).
Since this holds for an arbitrary vector h, the lemma is proved.

�

11. The proofs of Theorems 1.1 and 1.4

In this section, we collect all of the various facts of the previous sections that combine to prove
Theorems 1.1 and 1.4.

11.1. Proof / explanation of Theorem 1.1. To be precise about the equation for the one-phase
problem, we mean that for all t, ∂{Uf > 0} = graph(f(·, t)), that Uf solves the problem (1.1), in the
free boundary viscosity sense of Section 9, and that the normal velocity is given by (5.2)

V (x, f(x)) = G(∂nUf (x, f(x))) = G(I(f, x)).

Furthermore, the only restriction on f is that f ≥ δ and that f is bounded and continuous on Rd×[0, T ].
To be precise about the equation for the two-phase problem, we take the analogous set-up, but the

normal velocity is prescribed as (6.5),

V (x, f(x)) = G(∂+
n Uf (x, f(x)), ∂−n Uf (x, f(x))) = H(f, x).

The notion of solution is again the free boundary viscosity solution of Section 9. We have a further
restriction that δ ≤ f ≤ L− δ and f is continuous on Rd × [0, T ].

We note that per the assumptions of Section 5, for the one-phase problem, and Section 6 for the
two-phase problem, we always assume the free boundary is a bounded graph for all times. Section 9
(Lemmas 9.10 and 9.12) contains the proof of (i), that under the graph assumption, the free boundary
viscosity solution is equivalent to the parabolic viscosity solution of{

∂tf = J(f) in Rd × (0, T )

f(·, 0) = f0 on Rd.

Thanks to Theorem 7.10, both

J(f) = G(I(f)) ·
√

1 + |∇f |2 and J(f) = H(f) ·
√

1 + |∇f |2

are admissible operators for solving the parabolic equation, for respectively the one and two phase
problems (for I, H, defined respectively in (5.2), (6.5)).

The proof of the propagation of modulus claimed in Theorem 1.1 (ii) is a consequence of the
correspondence of solutions in (i), combined with the result of Lemma 10.1, which is applicable thanks
to Theorem 7.10. This was, of course, only possible because of the comparison theorem deduced in
Section 8.
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The proof of the existence of viscosity solutions claimed in Theorem 1.1 (iii), is a consequence of
the correspondence of solutions in (i), with the proof of existence in Section 8.2.

The precise statement of Theorem 1.4 has the operator I defined with equation (5.1), through the
formula (5.2). The proof of Lipschitz nature of I in Theorem 1.4, is a consequence of Theorem 5.13.
The min-max formula is a result of Theorem 7.5, combined with verification the I satisfies the results
of Assumption 7.1, which is in Theorem 7.10.

12. Comments about our assumptions, and some questions

There are many assumptions that accompany our Theorems 1.1 and 1.4. Some are for simplicity
and some are more nuanced. Here we discuss how some could be removed and how some may be
difficult to overcome. At the end, we suggest some lines of open questions that could be useful.

12.1. Translation invariance. In all of the above situations, we have only treated free boundary
evolutions in which the equations in the positive and negative phases of U , as well as the free boundary
condition, G, are translation invariant. We would like to say that we did this out of reasons of
simplicity, but we cannot claim that motivation, as it is not clear how difficult it will be to remove this
assumption. The main place it was used in a tangible fashion was in the proof of Lemma 5.15, and this
lemma played a fundamental role in most of the major results that followed– in particular Theorem
5.13 and all subsequent results invoking it. Although the translation invariance led to a simpler min-
max representation in Section 7, it does not play an essential role there. It does play, however, a
substantial role in the arguments of Section 8. This is because (surprisingly) it is still unknown to
what extent the uniqueness theory for viscosity solutions of integro-differential equations is applicable.
Presumably, one expects the uniqueness theory to parallel that of second order equations, but to date,
there are only a handful of works that can handle equations with non-trivial dependence on x; we defer
to the work of Barles-Imbert [6] for the latest results and earlier references. In particular, if one pursues
the x-dependent min-max formulation in Section 7, it is not clear if the resulting integro-differential
operators will fall into the scope of [6].

12.2. Rotational invariance. In principle, this should only be a technical assumption that is an
artifact of our method to establish the Lipschitz continuity of the operator, I, culminating in Theorem
5.13. The interested reader can probe more deeply into our method of proof for Theorem 5.13, where
we rotated two domains so that they would intersect in a C1 fashion. The way we chose to deal with
this situation required to rotate the underlying equations, hence needing an invariance assumption in
the absence of better estimates. It would be helpful to remove this assumption.

12.3. Graph assumption. As the careful reader will see, we assumed in Theorem 1.1 that if the free
boundary evolution, ∂{U(·, t) > 0} is a graph for all times, then one can deduce a correspondence
between the free boundary viscosity solution and the parabolic viscosity solution. This raises the
question of whether or not the graph assumption is reasonable? Answering this question is essential
to the future use of the methods suggested in this paper. This ties in with the star-shaped assumption
that appears for some of the preliminary results in [27]. In [27], they were able to first focus on
star-shaped initial free boundaries (which are equivalent to being a graph over some sphere), and then
they subsequently extended the regularity results to more general boundaries. It is conceivable that
something similar could be done in our context, but it is not obvious how to carry out this procedure
at the moment.

12.4. Some Questions. We believe there are at least a few natural questions resulting from the
results presented above, and we mention a few of them. This list is by no means complete, but we
think these are some of the most interesting questions.
x-dependence. As mentioned above, all ingredients (F1, F2, G) were taken to be independent of

x. What can be said when x dependence is allowed? This may lead to a better understanding of where
one may hope to push the uniqueness and regularity theory for viscosity solutions of integro-differential
operators like the ones that appear in (7.2).
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Anisotropic G. What happens if G is allowed to depend, in an appropriately monotone way, on
the full gradients, ∇U+

f and ∇U−f , instead of simply ∂+
n Uf and ∂−n Uf? Any reasonable ellipticity

restriction on G should keep it within the realm of the GCP and would likely enjoy properties similar
to those listed in Assumption 7.1. Is this indeed the case?

Lévy measures. Is it possible to find more detailed information about the Lévy measures, µij ,
that appear in Theorem 1.4? Can it be proved that they are in a class for which some regularity theory
is known (e.g. [12], [23], [24], or [55])? Are µij in a different class that has not yet been studied, but
possibly still enjoy certain regularity properties for solutions of ∂tf = I(f)? Answering these questions
will be an essential building block in order that the nonlocal theory can shed new light on these free
boundary problems.

Graphs over a manifold. In this paper, we made the assumption that the free boundary was
a graph over Rd that evolves with time. Can the results here be extended to include the case where
the free boundary, for short times, is the evolution of a graph over some submanifold of Rd+1 (in this
case, the natural submanifold would be that of the initial conditions, ∂{U(·, 0) > 0})? This situation
is not incompatible with the min-max theory developed in Section 7. Indeed, the results of [37] were
proved for operators acting on functions in, e.g. C1,γ(∂Ω), whenever ∂Ω is a nice enough hyper-surface.
Furthermore, this idea of tracking the free boundary as a graph over a reference manifold is compatible
with some of the results in [27], where the preservation of the star-shape property is equivalent to being
a graph over a sphere in the radial direction. Again, even if one can justify the graph assumption,
this would likely result in nonlocal parabolic equations that have non-trivial x-dependence (in fact,
the notion of translation invariance makes no sense in this situation). We note that in the case of
rotationally invariant operators in the respective positive and negative phases, this would result in a
rotationally invariant integro-differential operator for functions on the sphere– this should be amenable
to similar ideas we used for translation invariant equations for functions on Rd. Studying the operator
on a manifold that does not necessarily admit an invariant group of transformations puts the resulting
parabolic equation for the free boundary into a class of equations for which existence, uniqueness,
regularity, etc... is not well established (i.e. viscosity solutions for nonlocal parabolic equations with
x-dependent coefficients, posed over a manifold).

Equations in divergence form. One should note that we did not treat the case when in the set
{U > 0}, we have the equation

F (D2U,∇U) = div(A(x)∇U) = 0.

In most reasonable circumstances, this equation enjoys the maximum principle, and hence also the free
boundary operator will enjoy the GCP. Note that this equation is not translation invariant (otherwise,
it is contained in our results). However, the methods and results for the divergence theory are a bit
different from those employed herein for the fully nonlinear theory, and so there may be different
outcomes. Thus, the question is: how much can be said about the operator, I, under this assumption?
It may be possible that within the scope of Section 7, the Lévy measures could be shown to have nice
properties with respect to Lebesgue measure on Rd, akin to some of the existing integro-differential
results. The counter-balance to this benefit would be the fact that the integro-differential equation
would no longer be translation invariant. However, the known results about Green’s functions and
Poisson kernels for divergence equations may shed extra light on the situation. It is conceivable
that under some extra regularity assumptions on A(x), one may obtain a class of integro-differential
operators that enjoys known Schauder-type results, or could be within reach of minor modifications
of such existing results.

Problems of Stefan type. If one replaces equation (1.1) with a parabolic problem, then the
resulting free boundary problem is known as the Stefan problem. It could be possible that the ideas
in Sections 5 and 7 might extend to the Stefan set-up. This would require a new result, similar to
that of Section 7 that applied to operators with the space-time GCP instead of just the GCP in space
alone. One might conjecture that the resulting linear operators in the min-max would be nonlocal
in both space and time, not just nonlocal in space, as was proved here. That would mean that the
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space-time nonlocal theory could be relevant, such as, e.g. Allen [3] (which treats a more general form
of the Caputo-Marchaud time derivative), or even a nonlinear (in time) extension of similar results.
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