Exotic Cyclic Group Actions on Smooth 4-Manifolds

Ronald Fintushel
Michigan State University
March, 2009

Joint work with Ron Stern and Nathan Sunukjian
How exotic is ‘exotic’?

Exotic smooth structures
Important consequences of Seiberg-Witten (and Donaldson) theory
- Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
- Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions
- Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.

Example: Exotic involutions on S^4, Quotient $= \text{Fake } RP^4$ (F- Stern/ Cappell - Shaneson, Gompf)
- Want orientation-preserving examples
How exotic is ‘exotic’?

Exotic smooth structures
Important consequences of Seiberg-Witten (and Donaldson) theory

- Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
- Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions

- Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.

Example: Exotic involutions on S^4, Quotient = Fake RP^4

(F- Stern/ Cappell - Shaneson, Gompf)

- Want orientation-preserving examples
How exotic is ‘exotic’?

Exotic smooth structures
Important consequences of Seiberg-Witten (and Donaldson) theory
- Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
- Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions
- Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.
Example: Exotic involutions on S^4, Quotient = Fake RP^4 (F- Stern/ Cappell - Shaneson, Gompf)
- Want orientation-preserving examples
How exotic is ‘exotic’?

Exotic smooth structures
Important consequences of Seiberg-Witten (and Donaldson) theory
• Existence of nondiffeomorphic but homeomorphic smooth 4-manifolds
• Existence of surfaces in a fixed smooth 4-manifold which are topologically but not smoothly equivalent

Exotic smooth group actions
• Existence of smooth actions of a group on a smooth 4-manifold which are equivariantly homeomorphic but not equivariantly diffeomorphic.
Example: Exotic involutions on S^4, Quotient = Fake RP^4 (F- Stern/ Cappell - Shaneson, Gompf)
• Want orientation-preserving examples
Ue’s examples

Ue’s Theorem, 1998

For any nontrivial finite group \(G \) there exists a smooth 4-manifold that has infinitely many free \(G \)-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

\(Y \): \(\mathbb{Q} \)-homology \(S^4 \) with \(\pi_1(Y) \to G \), onto, s. t. corr. cover is \(\tilde{Y} = S^2 \times S^2 \# \mathbb{Z} \), some \(\mathbb{Z} \). Get \(Y \) by spinning known 3D example.

\(X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \) odd (log transformed K3’s)

\(X_0 \# Y, \ X_1 \# Y \) homeo not diffeo using Seiberg-Witten

The \(G \)-covers \(Q_i \) come from \(\pi_1(X_i \# Y) \to \pi_1(Y) \to G \)

\(Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# \mathbb{Z} \# |G|X_i \cong S^2 \times S^2 \# \mathbb{Z} \# |G|X_i \cong Q_j \)

since the \(E(2)_p \)’s stabilize after one \(\# S^2 \times S^2 \).

• The \(Q_i \) are reducible.
Ue’s examples

Ue’s Theorem, 1998
For any nontrivial finite group \(G \) there exists a smooth 4-manifold that has infinitely many free \(G \)-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

\(Y: \) \(\mathbb{Q} \)-homology \(S^4 \) with \(\pi_1(Y) \to G \), onto, s. t. corr. cover is \(\tilde{Y} = S^2 \times S^2 \# Z \), some \(Z \). Get \(Y \) by spinning known 3D example.

\(X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q \) odd (log transformed K3’s)
\(X_0 \# Y, \ X_1 \# Y \) homeo not diffeo using Seiberg-Witten

The \(G \)-covers \(Q_i \) come from \(\pi_1(X_i \# Y) \to \pi_1(Y) \to G \)
\(Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i \)
\(\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j \)
since the \(E(2)_p \)'s stabilize after one \(\# S^2 \times S^2 \).

• The \(Q_i \) are reducible.
Ue’s examples

Ue’s Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: \mathbb{Q}-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example.

$X_0 = E(2)_p$, $X_1 = E(2)_q$, $p \neq q$ odd (log transformed K3’s)

$X_0 \# Y$, $X_1 \# Y$ homeo not diffeo using Seiberg-Witten

The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$

$Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$

$\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j$

since the $E(2)_p$’s stabilize after one $\# S^2 \times S^2$.

- The Q_i are reducible.
Ue’s examples

Ue’s Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: \mathbb{Q}-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example.

$X_0 = E(2)_p$, $X_1 = E(2)_q$, $p \neq q$ odd (log transformed K3’s)

$X_0 \# Y$, $X_1 \# Y$ homeo not diffeo using Seiberg-Witten

The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$

$Q_i \cong \tilde{Y} \# G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$

$\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j$

since the $E(2)_p$’s stabilize after one $\# S^2 \times S^2$.

• The Q_i are reducible.
Ue’s examples

Ue’s Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: \mathbb{Q}-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# \mathbb{Z}$, some \mathbb{Z}. Get Y by spinning known 3D example.

$X_0 = E(2)_p$, $X_1 = E(2)_q$, $p \neq q$ odd (log transformed K3’s)

$X_0 \# Y$, $X_1 \# Y$ homeo not diffeo using Seiberg-Witten

The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$

$Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# \mathbb{Z} \# |G|X_i$

$\cong S^2 \times S^2 \# \mathbb{Z} \# |G|X_j \cong Q_j$

since the $E(2)_p$’s stabilize after one $\# S^2 \times S^2$.

• The Q_i are reducible.
Ue's examples

Ue's Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: \mathbb{Q}-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example. $X_0 = E(2)_p$, $X_1 = E(2)_q$, $p \neq q$ odd (log transformed K3's)

$X_0 \# Y$, $X_1 \# Y$ homeo not diffeo using Seiberg-Witten

The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$

$Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$

\[\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j \]

since the $E(2)_p$'s stabilize after one $\# S^2 \times S^2$.

- The Q_i are reducible.
Ue’s examples

Ue’s Theorem, 1998

For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: \mathbb{Q}-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $	ilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example.

$X_0 = E(2)_p$, $X_1 = E(2)_q$, $p \neq q$ odd (log transformed K3’s)

$X_0 \# Y$, $X_1 \# Y$ homeo not diffeo using Seiberg-Witten

The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$

$Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$

$\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j$

since the $E(2)_p$’s stabilize after one $\# S^2 \times S^2$.

• The Q_i are reducible.
Ue’s examples

Ue’s Theorem, 1998
For any nontrivial finite group G there exists a smooth 4-manifold that has infinitely many free G-actions so that their orbit spaces are homeomorphic but mutually nondiffeomorphic.

The examples

Y: \mathbb{Q}-homology S^4 with $\pi_1(Y) \to G$, onto, s. t. corr. cover is $\tilde{Y} = S^2 \times S^2 \# Z$, some Z. Get Y by spinning known 3D example.

$X_0 = E(2)_p, \ X_1 = E(2)_q, \ p \neq q$ odd (log transformed K3’s)

$X_0 \# Y, \ X_1 \# Y$ homeo not diffeo using Seiberg-Witten

The G-covers Q_i come from $\pi_1(X_i \# Y) \to \pi_1(Y) \to G$

$Q_i \cong \tilde{Y} \# |G|X_i \cong S^2 \times S^2 \# Z \# |G|X_i$

$\cong S^2 \times S^2 \# Z \# |G|X_j \cong Q_j$

since the $E(2)_p$’s stabilize after one $\# S^2 \times S^2$.

- The Q_i are reducible.
Exotic cyclic group actions

Theorem (F., Stern, Sunukjian)

Let Y be a simply connected 4-manifold with $b^+ \geq 1$ containing an embedded surface Σ of genus $g \geq 1$ of nonnegative self-intersection. Suppose that $\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d$ and that the pair (Y, Σ) has a nontrivial relative Seiberg-Witten invariant. Suppose also that Σ contains a nonseparating loop which bounds an embedded 2-disk in $Y \setminus \Sigma$. Let d' divide d, and let X be the (simply connected) d'-fold cover of Y branched over Σ. Then X admits an infinite family of smoothly distinct but topologically equivalent actions of $\mathbb{Z}_{d'}$.
Some simple examples

Curves in \mathbb{CP}^2

$Y = \mathbb{CP}^2$, $\Sigma = \text{embedded degree } d \text{ curve}$.
$X = \text{degree } d \text{ hypersurface in } \mathbb{CP}^3$

If $d = 3$, $X = \mathbb{CP}^2 \# 6\overline{\mathbb{CP}^2}$ \Rightarrow we have infinitely many smoothly inequivalent topologically equivalent \mathbb{Z}_3-actions on $\mathbb{CP}^2 \# 6\overline{\mathbb{CP}^2}$.

If $d = 4$, $X = K3$, \Rightarrow smoothly inequivalent topologically equivalent \mathbb{Z}_4-actions on the K3-surface.
Also theorem \Rightarrow families of \mathbb{Z}_2 and \mathbb{Z}_3-actions on K3.

\mathbb{Z}_5-actions on quintics, etc.
Some simple examples

Curves in \mathbb{CP}^2

$Y = \mathbb{CP}^2$, $\Sigma = \text{embedded degree } d \text{ curve.}$

$X = \text{degree } d \text{ hypersurface in } \mathbb{CP}^3$

If $d = 3$, $X = \mathbb{CP}^2 \# 6\overline{\mathbb{CP}^2} \iff \text{we have infinitely many smoothly inequivalent topologically equivalent } \mathbb{Z}_3\text{-actions on } \mathbb{CP}^2 \# 6\overline{\mathbb{CP}^2}$.

If $d = 4$, $X = K3$, \iff smoothly inequivalent topologically equivalent $\mathbb{Z}_4\text{-actions on the K3-surface.}$

Also theorem \iff families of \mathbb{Z}_2 and $\mathbb{Z}_3\text{-actions on K3.}$

$\mathbb{Z}_5\text{-actions on quintics, etc.}$
Knot and rim surgery (F. - Stern)

Knot surgery

K: Knot in S^3, T: square 0 essential torus in X

$X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$

$S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

- If X and $X \setminus T$ both simply connected, so is X_K. (So X_K homeo to X)
- $SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Rim surgery

$\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ.

Rim surgery = knot surgery on rim torus.

Can change embedding type of Σ. Get $\Sigma_K \subset X$.
Knot and rim surgery (F. - Stern)

Knot surgery

K: Knot in S^3, T: square 0 essential torus in X

$X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$

$S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

- If X and $X \setminus T$ both simply connected, so is X_K. (So X_K homeo to X)

- $SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Rim surgery

$\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ.

Rim surgery = knot surgery on rim torus.

Can change embedding type of Σ. Get $\Sigma_K \subset X$.
Knot and rim surgery (F. - Stern)

Knot surgery

\(K: \) Knot in \(S^3 \), \(T: \) square 0 essential torus in \(X \)

\(X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K) \)

\(S^1 \times (S^3 \setminus N_K) \) has the homology of \(T^2 \times D^2 \).

Facts

- If \(X \) and \(X \setminus T \) both simply connected, so is \(X_K \). (So \(X_K \) homeo to \(X \))
- \(SW_{X_K} = SW_X \cdot \Delta_K(t^2) \)

Rim surgery

\(\Sigma \subset X: \) embedded orientable surface in simply connected 4-manifold.

\(C: \) homologically essential loop in \(\Sigma \)

Rim torus: preimage of \(C \) in bdry of normal bundle of \(\Sigma \).

Rim surgery = knot surgery on rim torus.

Can change embedding type of \(\Sigma \). Get \(\Sigma_K \subset X \).
Knot and rim surgery (F. - Stern)

Knot surgery

K: Knot in S^3, T: square 0 essential torus in X

$X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$

$S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

- If X and $X \setminus T$ both simply connected, so is X_K. (So X_K homeo to X)
- $\mathcal{SW}_{X_K} = \mathcal{SW}_X \cdot \Delta_K(t^2)$

Rim surgery

$\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ.

Rim surgery = knot surgery on rim torus.

Can change embedding type of Σ. Get $\Sigma_K \subset X$.
Knot and rim surgery (F. - Stern)

Knot surgery

K: Knot in S^3, T: square 0 essential torus in X

$X_K = X \setminus N_T \cup S^1 \times (S^3 \setminus N_K)$

$S^1 \times (S^3 \setminus N_K)$ has the homology of $T^2 \times D^2$.

Facts

- If X and $X \setminus T$ both simply connected, so is X_K. (So X_K homeo to X)
- $SW_{X_K} = SW_X \cdot \Delta_K(t^2)$

Rim surgery

$\Sigma \subset X$: embedded orientable surface in simply connected 4-manifold.

C: homologically essential loop in Σ

Rim torus: preimage of C in bdry of normal bundle of Σ.

Rim surgery = knot surgery on rim torus.

Can change embedding type of Σ. Get $\Sigma_K \subset X$.
Spinning a knot K in S^3 gives 2-knot in S^4:
S^1-action on S^4. Orbit space B^3.
Spun knot = preimage of knotted arc. Preimage of $\partial B^3=\text{twin}$.
Knot surgery replaces $C \times S^1 \times D^2$ with $S^4 \setminus (\text{spun knot} \cup \text{twin})$.
$C \times B^3 = \text{complement of trivial twin in } S^4$.

More on rim surgery
More on rim surgery

Spinning a knot K in S^3 gives 2-knot in S^4: S^1-action on S^4. Orbit space B^3.

Spun knot = preimage of knotted arc. Preimage of ∂B^3 = twin

Knot surgery replaces $C \times S^1 \times D^2$ with $S^4 \setminus (\text{spun knot} \cup \text{twin})$

$C \times B^3 = \text{complement of trivial twin in } S^4$.
Spinning a knot K in S^3 gives 2-knot in S^4: S^1-action on S^4. Orbit space B^3.

Spun knot = preimage of knotted arc. Preimage of $\partial B^3 = \text{twin}$

Knot surgery replaces $C \times S^1 \times D^2$ with $S^4 \setminus (\text{spun knot} \cup \text{twin})$

$C \times B^3 = \text{complement of trivial twin in } S^4$.
Theorem (F - Stern). Let \(g(\Sigma) > 0 \). If \(\pi_1(X) = 0 = \pi_1(X \setminus \Sigma) \) then there is a self-homeo of \(X \) throwing \(\Sigma_K \) on \(\Sigma \). If \(\Sigma^2 > 0 \), then the relative SW-invariant of \((X, \Sigma_K) \) is the relative SW-invariant of \((X, \Sigma) \) times the Alexander polynomial of \(K \).

Get smoothly inequivalent embeddings if original SW inv’t is \(\neq 0 \). (E.g. symplectic submanifold.) Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need \(\pi_1(X \setminus \Sigma) = \mathbb{Z}_d \). Problem: Rim surgery will not preserve this condition.

Solution (Kim - Ruberman) \(k \)-Twist-spun rim surgery does preserve \(\pi_1 = \mathbb{Z}_d \) as long as \(k \) is prime to \(d \).
In fact, they show that the new surface obtained is topologically equivalent to the old one in this case.
Relative SW-invariant is the same as for ordinary rim surgery.
(Can’t get enough of that) Rim surgery

Theorem (F - Stern). Let \(g(\Sigma) > 0 \). If \(\pi_1(X) = 0 = \pi_1(X \setminus \Sigma) \) then there is a self-homeo of \(X \) throwing \(\Sigma_K \) on \(\Sigma \). If \(\Sigma^2 > 0 \), then the relative SW-invariant of \((X, \Sigma_K) \) is the relative SW-invariant of \((X, \Sigma) \) times the Alexander polynomial of \(K \).

Get smoothly inequivalent embeddings if original SW inv’t is \(\neq 0 \). (E.g. symplectic submanifold.)
Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need \(\pi_1(X \setminus \Sigma) = \mathbb{Z}_d \).
Problem: Rim surgery will not preserve this condition.

Solution (Kim - Ruberman) \(k \)-Twist-spun rim surgery does preserve \(\pi_1 = \mathbb{Z}_d \) as long as \(k \) is prime to \(d \).
In fact, they show that the new surface obtained is topologically equivalent to the old one in this case.
Relative SW-invariant is the same as for ordinary rim surgery.
(Can’t get enough of that) Rim surgery

Theorem (F - Stern). Let $g(\Sigma) > 0$. If $\pi_1(X) = 0 = \pi_1(X \setminus \Sigma)$ then there is a self-homeo of X throwing Σ_K on Σ. If $\Sigma^2 > 0$, then the relative SW-invariant of (X, Σ_K) is the relative SW-invariant of (X, Σ) times the Alexander polynomial of K.

Get smoothly inequivalent embeddings if original SW inv’t is $\neq 0$. (E.g. symplectic submanifold.)
Relative SW-invariant lives in monopole Floer homology group.

Want to take cyclic branched covers — need $\pi_1(X \setminus \Sigma) = \mathbb{Z}_d$.
Problem: Rim surgery will not preserve this condition.

Solution (Kim - Ruberman) k-Twist-spun rim surgery does preserve $\pi_1 = \mathbb{Z}_d$ as long as k is prime to d.
In fact, they show that the new surface obtained is topologically equivalent to the old one in this case.
Relative SW-invariant is the same as for ordinary rim surgery.
Twist-spinning a knot

K: knot in S^3. Twist-spinning operation due to Zeeman. Get knotted S^2 in S^4 and circle action.

Twist-spun rim surgery, $\Sigma_{K,k}$

Twist-rim $C \times S^1 \times D^2$ with $S^4(\text{twist-spun knot } \cup \text{ twin})$

$C \times I \times D^2$ replaced by complement of trivial twin in S^4.

Annulus on surface replaced by twist-spun knot minus polar caps.
Twist-spinning

Twist-spinning a knot

K: knot in S^3. Twist-spinning operation due to Zeeman. Get knotted S^2 in S^4 and circle action.

Twist-spun rim surgery, $\Sigma_{K,k}$

Twist-rim $C \times S^1 \times D^2$ with $S^4(\text{twist-spun knot} \cup \text{twin})$ $C \times I \times D^2$ replaced by complement of trivial twin in S^4. Annulus on surface replaced by twist-spun knot minus polar caps.
Twist-spinning

Twist-spinning a knot

K: knot in S^3. Twist-spinning operation due to Zeeman.
Get knotted S^2 in S^4 and circle action.

Twist-spun rim surgery, $\Sigma_{K,k}$

Twist-rim $C \times S^1 \times D^2$ with $S^4(\text{twist-spun knot } \cup \text{ twin})$
$C \times I \times D^2$ replaced by complement of trivial twin in S^4.
Annulus on surface replaced by twist-spun knot minus polar caps.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.

Orbit space: B^3 or S^3

Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p: S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k =$ closed arc labeled ‘\mathbb{Z}_k’.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B^3 or S^3
Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p : S^4 \to S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where E_k = closed arc labeled ‘\mathbb{Z}_k’.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3. Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p: S^4 \to S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$ gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k = \text{closed arc labeled 'Z_k'}$.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B^3 or S^3
Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p : S^4 \rightarrow S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$
gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k =$ closed arc labeled ‘\mathbb{Z}_k’.

[Diagram of twist-spinning a knot]
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B^3 or S^3
Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p : S^4 \to S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k =$ closed arc labeled ‘Z_k’.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B^3 or S^3
Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p : S^4 \to S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1} (\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k = \text{closed arc labeled } \mathbb{Z}_k$.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data. Orbit space: B^3 or S^3
Fixed point set = S^0 or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p: S^4 \to S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\bar{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k =$ closed arc labeled ‘Z_k’.
Circle actions on S^4 and Twist-spinning

Determined up to equivariant diffeomorphism by orbit data.
Orbit space: B^3 or S^3
Fixed point set $= S^0$ or S^2. Exceptional orbit image 0, 1 or 2 arcs.

Twist-spinning a knot

K: knot in S^3. S^1-action on S^4 with orbit space S^3, $p : S^4 \to S^3$ where the isotropy type corresponding to the arc A is trivial.

k-twist spin of $K = p^{-1}(\overline{A}) \subset S^4$.

Twist-spun rim surgery, $\Sigma_{K,k}$

gets replaced with $S^4 \setminus \text{Nbd}(p^{-1}(E_k))$ where $E_k =$ closed arc labeled ‘\mathbb{Z}_k’.
Relative Seiberg-Witten invariants

By blowing up, assume $\Sigma \cdot \Sigma = 0$.

Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spinc-structures s on Y satisfying $\langle c_1(s), \Sigma \rangle = 2g - 2$.

$SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(B(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

$z = [(A, \Phi)]$ solving SW eq’ns.

a_0: unique spinc-structure on $\Sigma \times S^1$ of degree $2g - 2$

Knot surgery theorem

Basic classes for $Y|\Sigma_K,k$: $z + j\rho$, $\rho = PD$(rim torus), t^j has $\neq 0$ coeff in $\Delta_K(t)$. \implies

Given (Y, Σ, C) there is an infinite family of knots K and surfaces Σ_K,k all topologically equivalent but smoothly inequivalent obtained by (K, k)-twist-rim surgery.
By blowing up, assume $\Sigma \cdot \Sigma = 0$.

Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spinc-structures s on Y satisfying $\langle c_1(s), \Sigma \rangle = 2g - 2$.

$$SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(B(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

$z = [(A, \Phi)]$ solving SW eq’ns.

a_0: unique spinc-structure on $\Sigma \times S^1$ of degree $2g - 2$

Knot surgery theorem

Basic classes for $Y|\Sigma_K,k$: $z + j\rho$, $\rho = \text{PD}(\text{rim torus})$, t^j has $\neq 0$ coeff in $\Delta_K(t)$.

Given (Y, Σ, C) there is an infinite family of knots K and surfaces Σ_K,k all topologically equivalent but smoothly inequivalent obtained by (K, k)-twist-rim surgery.
Relative Seiberg-Witten invariants

By blowing up, assume $\Sigma \cdot \Sigma = 0$.

Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spinc-structures s on Y satisfying $\langle c_1(s), \Sigma \rangle = 2g - 2$.

$SW(Y|\Sigma) : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(B(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

$z = [(A, \Phi)]$ solving SW eq’ns.

a_0: unique spinc-structure on $\Sigma \times S^1$ of degree $2g - 2$

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}$: $z + j \rho$, $\rho = \text{PD}($rim torus$)$, t^j has $\neq 0$ coeff in $\Delta_K(t)$. \implies

Given (Y, Σ, C) there is an infinite family of knots K and surfaces $\Sigma_{K,k}$ all topologically equivalent but smoothly inequivalent obtained by (K, k)-twist-rim surgery.
Relative Seiberg-Witten invariants

By blowing up, assume $\Sigma \cdot \Sigma = 0$.

Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spinc-structures s on Y satisfying $\langle c^1(s), \Sigma \rangle = 2g - 2$.

$SW_{(Y|\Sigma)} : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \rightarrow \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(\mathcal{B}(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

$z = [(A, \Phi)]$ solving SW eq’ns.

a_0: unique spinc-structure on $\Sigma \times S^1$ of degree $2g - 2$

Knot surgery theorem

Basic classes for $Y|\Sigma_K,k$: $z + j\rho$, $\rho = \text{PD}(\text{rim torus})$, t^j has $\neq 0$ coeff in $\Delta_K(t)$. \implies

Given (Y, Σ, C) there is an infinite family of knots K and surfaces Σ_K,k all topologically equivalent but smoothly inequivalent obtained by (K, k)-twist-rim surgery.
Relative Seiberg-Witten invariants

By blowing up, assume $\Sigma \cdot \Sigma = 0$.

Seiberg-Witten invariant of $Y \setminus N(\Sigma)$ obtained from spinc-structures s on Y satisfying $\langle c_1(s), \Sigma \rangle = 2g - 2$.

$SW(Y|\Sigma) : H_2(Y \setminus N(\Sigma), \Sigma \times S^1; \mathbb{R}) \to \mathbb{R}$ (Kronheimer/ Mrowka)

Role of basic classes played by $z \in \pi_0(B(Y \setminus N(\Sigma); [a_0]))$, principal homogeneous space for $H^2(Y \setminus N(\Sigma), \partial)$

$z = [(A, \Phi)]$ solving SW eq’ns.

a_0: unique spinc-structure on $\Sigma \times S^1$ of degree $2g - 2$

Knot surgery theorem

Basic classes for $Y|\Sigma_{K,k}$: $z + j \rho$, $\rho = \text{PD}(\text{rim torus})$, t^j has $\neq 0$ coeff in $\Delta_K(t)$. \implies

Given (Y, Σ, C) there is an infinite family of knots K and surfaces $\Sigma_{K,k}$ all topologically equivalent but smoothly inequivalent obtained by (K, k)-twist-rim surgery.
Cyclic group actions

Y: simply connected smooth 4-manifold.

Σ genus ≥ 1 surface embedded in Y such that $\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d$.

C: nonseparating loop on Σ, bounds D^2 in complement.

$X = d$-fold branched cyclic cover.

Choose k relatively prime to d

\exists family of knots K_i so that d-fold branched covers X_i of $(Y, \Sigma_{K_i, k})$ are all topologically equivalent but smoothly distinct covers.

\Rightarrow

Topologically equivalent but smoothly distinct actions of \mathbb{Z}_d.

Need to see that X_i are diffeomorphic to each other.
Cyclic group actions

\(Y \): simply connected smooth 4-manifold.
\(\Sigma \) genus \(\geq 1 \) surface embedded in \(Y \) such that \(\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d \).
\(C \): nonseparating loop on \(\Sigma \), bounds \(D^2 \) in complement.
\(X = d \)-fold branched cyclic cover.

Choose \(k \) relatively prime to \(d \) \(\exists \) family of knots \(K_i \) so that \(d \)-fold branched covers \(X_i \) of \((Y, \Sigma_{K_i,k}) \) are all topologically equivalent but smoothly distinct covers.

\[\implies \]

Topologically equivalent but smoothly distinct actions of \(\mathbb{Z}_d \).

Need to see that \(X_i \) are diffeomorphic to each other.
Cyclic group actions

\(Y\): simply connected smooth 4-manifold.
\(\Sigma\) genus \(\geq 1\) surface embedded in \(Y\) such that \(\pi_1(Y \setminus \Sigma) = \mathbb{Z}_d\).
\(C\): nonseparating loop on \(\Sigma\), bounds \(D^2\) in complement.
\(X = d\)-fold branched cyclic cover.

Choose \(k\) relatively prime to \(d\) \(\exists\) family of knots \(K_i\) so that \(d\)-fold branched covers \(X_i\) of \((Y, \Sigma_{K_i, k})\) are all topologically equivalent but smoothly distinct covers.

\[\Rightarrow\]
Topologically equivalent but smoothly distinct actions of \(\mathbb{Z}_d\).

Need to see that \(X_i\) are diffeomorphic to each other.
Branched covers of twist-spun knots

\[S^4(K; k, d) \xrightarrow{p'} \mathbb{Z}_k \]

\[\mathbb{Z}_d \]

\[p \]

\[p^{-1}(A) \]

\[\mathbb{Z}_k \]

\[\mathbb{Z}_d \]

A = principal orbits
In cover, replacing $C \times I \times D^2$ with $S^4 \setminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd}(\text{disk}) = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$.

\Rightarrow

X_K diffeomorphic to X
In cover, replacing $C \times I \times D^2$ with $S^4 \setminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd(disk)} = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$.

\Rightarrow

X_K diffeomorphic to X
In cover, replacing $C \times I \times D^2$ with $S^4\setminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd(disk)} = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$.

\Rightarrow

X_K diffeomorphic to X
In cover, replacing $C \times I \times D^2$ with $S^4 \setminus E_k \neq S^1 \times B^3$

C bounds disk, $C \times I \times D^2 \cup \text{Nbd}(\text{disk}) = B^4$ in X

After knot surgery in Y, B^4 in cover becomes $S^4(K; k, d) \setminus B^4$.

\implies X_K diffeomorphic to X