MTH 103 Review Problems for Midterm Exam II

1. (1.7 #22) Solve $3(x + 2) \leq 2(x + 5)$. Sketch the solution set and express your answer using interval notation.

2. (1.7 #38) Solve $0 \geq (5 - x)/2 \geq -10$. Sketch the solution set and express your answer using interval notation.

3. (1.7 #46) Solve $2 - x < 3x + 5 < 18$. Sketch the solution set and express your answer using interval notation. (Hint: The compound inequality represents TWO inequalities BOTH of which must hold.)

4. (1.7 #58) Solve $x^2 + 9x + 20 \geq 0$. Sketch the solution set and express your answer using interval notation.

5. (1.7 #82) Solve $3/(x + 2) \leq 4$. Sketch the solution set and express your answer using interval notation. (Hint: You cannot multiply by $(x + 2)$ because we do not know if it represents a positive or a negative value.)

6. (1.8 #18) Write $|x - 5|$ without absolute value symbols, assuming that $x \leq 5$.

7. (1.8 #28) Solve $|(3x + 11)/7| - 15 = -14$.

8. (1.8 #40) Solve $|x - 2| = |3x + 8|$. (Hint: Use $|x| = \sqrt{x^2}$.)

9. (1.8 #54) Solve $|2x - 7| - 3 > 2$.

10. (1.8 #66) Solve $8 > |4x - 1| > 5$. (Hint: The compound inequality represents TWO inequalities BOTH of which must hold.)

11. (1.8 #74) Solve $|x + 1| < |x + 2|$. (Hint: Use $|x| = \sqrt{x^2}$.)

12. (2.1 #76) Find the distance between $P(6, -3)$ and $Q(-3, 2)$.

13. (2.1 #88) Find the coordinates of Q if M is the midpoint of the line segment PQ where $P(2, -7)$ and $M(-5, 6)$.

14. (2.1 #96) Rectangle $ABCD$ has $A(-3, -2)$, AB and CD parallel to the x-axis, BC and DA parallel to the y-axis, and C lies in the first quadrant. If the perimeter of the rectangle is 42 and the length of side AB is twice as long as side BC, determine the coordinates of C. (Hint: Sketch the rectangle so that you can visualize the problem.)

15. (2.2 #20) Determine the slope of the line through $P(2, \sqrt{7})$ and $Q(\sqrt{7}, 2)$. Simplify your answer.

16. (2.2 #60) The line PQ is parallel to RS. Determine y if $P(2, -3), Q(5, 7), R(3, -1)$, and $S(6, y)$.

17. (2.2 #62) The line PQ is perpendicular to RS. Determine x if $P(1, -2), Q(3, 4), R(x, 6)$, and $S(6, 5)$.

18. (2.2 #76) Show that the points $E(-1, 1)$, $F(3, 0)$, $G(2, 4)$, and $H(-2, 3)$ are the vertices of a square. (Hint: What is the definition of a square?)

19. (2.3 #22) Write an equation of the line through $P(-5, -5)$ and $Q(0, 0)$.

20. (2.3 #66) Write an equation of the line parallel to $x = -3y$ and passing through $P(0, 0)$.

21. (2.3 #76) Write an equation of the line perpendicular to $x = -3y/4 + 5$ and passing through $P(1, -5)$.

22. (2.3 #82) Find an equation of the line parallel to the line $y = -8$ and passing through the midpoint of the segment joining $(-4, 2)$ and $(-2, 8)$.

23. (2.4 #18) Find the x and y-intercepts of $y = x^2 + 2x - 3$. You must write an algebraic solution.

24. (2.4 #42) Determine the graph is symmetric about the x-axis, the y-axis, and/or the origin: $y = 3x^4 + 7$. You must write an algebraic solution.

25. (2.4 #86) Write an equation of the circle centered at $(-9, 8)$ and having radius $2\sqrt{3}$.

26. (2.4 #96) Determine the center and radius of the circle $3x^2 + 3y^2 + 6x - 30y + 3 = 0$ by writing the equation in standard form. Show all of your steps when completing the square.