Hw #7 Solutions

1. #8 in 2.1

Show that \(a^{p-1} \equiv 1 \pmod{p} \)

(a) \(a = 2, \ p = 5 \)
\[2^4 = 16 = 1 + 5 \cdot 3 \equiv 1 \pmod{5} \]

(b) \(a = 4, \ p = 7 \)
\[4^6 = 2^{12} = 4096 = 1 + 7 \cdot 585 \equiv 1 \pmod{7} \]

(c) \(a = 3, \ p = 11 \)
\[3^{10} = 9^5 \equiv (-2)^5 \pmod{11} \]
\[(-2)^5 = -32 = 1 + 11 \cdot (-3) \equiv 1 \pmod{11} \]

2. #16 in 2.1

(a) If \(a \in \mathbb{N} \), prove that \(a \) is congruent to its last digit \(\pmod{10} \).

Proof: The base 10 expansion is
\[a = d_0 + d_1 \cdot 10 + \cdots + d_n \cdot 10^n \]
So, \(a \equiv d_0 + 0 + \cdots + 0 \equiv d_0 \pmod{10} \)

(b) Show that no perfect square has 2, 3, 7, or 8 as its last digit.

Proof: By part (a), this is the same as showing a perfect square cannot be congruent to 2, 3, 7, or 8 \(\pmod{10} \).

Test all congruence classes \(\pmod{10} \):
\[\begin{align*}
[0]^2 &= [0] \\
[9]^2 &= [1] \end{align*} \]
Thus, every perfect square is in the set \([0, 1, 5, 6, 9] \).

\(\square \)
3. #26 in 201

a) Give an example to show that the following is false: If \(ab \equiv ac \pmod{n} \) and \(a \neq 0 \pmod{n} \), then \(b \equiv c \pmod{n} \).

Example: \(n = 12 \), \(a = 4 \), \(b = 3 \), \(c = 6 \)

b) Prove the statement in (a) when \((a, n) = 1 \).

Proof: We are given that \(ab \equiv ac \pmod{n} \).

Therefore, \(n | (b - c) \). Since \((a, n) = 1 \), \(n | (b - c) \). Thus \(b \equiv c \pmod{n} \). \(\square \)

4. #2 in 2.2

a) Solve \(x^2 = 1 \) in \(\mathbb{Z}_8 \)

<table>
<thead>
<tr>
<th>Not Solutions</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0]^2 \neq [1])</td>
<td>([1]^2 = [17]); (x = [17]) (\checkmark)</td>
</tr>
</tbody>
</table>

b) \(x^4 = 1 \) in \(\mathbb{Z}_8 \); \(x = [1], [2], [5], [7] \) are solutions.

e.g. \([37]^4 = [5-2]^4 = [16]^2 = [17] \).

c) \(x^2 + 3x + 2 = 0 \) in \(\mathbb{Z}_6 \)

\((x+2)(x+1) = 0 \) \(x = [1], [2], [4], [5] \) are solutions.

d) \(x^2 + 1 = 0 \) in \(\mathbb{Z}_{12} \)

No Solutions:
\(0^2 = 0 \), \(1^2 = 1 \), \(2^2 = 4 \), \(3^2 = 9 \), \(4^2 = 4 \), \(5^2 = 1 \), \(6^2 = 0 \), \((-6)^2 = 0 \), \((-5)^2 = 1 \), \((-4)^2 = 4 \), \((-3)^2 = 9 \), \((-2)^2 = 4 \), \((-1)^2 = 1 \).

Adding [13] does not yield \([07]\).

e) False: \(6 \cdot 2 = 0 \) in \(\mathbb{Z}_{12} \); \(2 \cdot 6 \neq 0 \) in \(\mathbb{Z}_{12} \).