6.2 # 4, 5, 7, 9, 10, 11, 12, 13, 23

#4 Done in class on Friday 04/29/11

#5 If \(I \triangleleft R \) and \(R \) is an integral domain, is \(R/I \) an integral domain?

No: \(R = \mathbb{Z}, \; I = 4\mathbb{Z} \)

#7 Let \(T = 3\mathbb{Z}, \; I = \langle 6 \rangle \). Show \(I \triangleleft T \).

If differences of multiples of 6 are multiples of 6, a multiple of 6 multiplied by a multiple of 3 is a multiple of 6.

More generally, if \(I \triangleleft T \subseteq R \) and \(I, T \triangleleft R \), then \(I \triangleleft T \).

Proof: We are given that \(I \) is a subring, so we only need check that if \(t \in T \), then for each \(a \in I \), \(t + a \in I \) and \(a + t \in I \). Thus \(t + I \) and so \(\forall t \in I \), \(a \in I \).

#7(b) Write out table for \(T/I \). To see it is a field:

\[
\begin{array}{c|cc}
 & I & 3+I \\
----&----&----
I & I & 3+I \\
3+I & 3+I & 9+I = 3+I \\
 & 6+I & 6+I \\
\end{array}
\]

\(T/I = \{ I, 3+I \} \)

#9 If \(R \) is a ring, then \(R/(0) \cong R \).

Proof: Let \(f: R \to R \) be the identity function, i.e. \(f(a) = a \). Then \(f \) is clearly an isomorphism.

Ker\(f = (0) \). By the first isomorphism theorem \(\cong R/(0) \).
10. Let R, S rings. Show $\pi : R \times S \to R$ defined by $\pi (r, s) = r$ is a surjective homomorphism of $\ker \pi \subseteq S$.

Proof: Surjective: Given $r \in R$, then $(r, 0) \in R \times S$. Hence $\pi (r, 0) = r$.

Homomorphism: Suppose $(r_1, s_1), (r_2, s_2) \in R \times S$

\[
\pi (r_1, s_1) + (r_2, s_2) = \pi (r_1 + r_2, s_1 + s_2) = r_1 + r_2 = \pi (r_1, s_1) + \pi (r_2, s_2)
\]

\[
\pi (r_1, s_1)(r_2, s_2) = \pi (r_1 r_2, s_1 s_2) = r_1 r_2 = \pi (r_1, s_1) \circ \pi (r_2, s_2)
\]

$\ker \pi = \{ (0, s) : s \in S \}$.

Define $\psi : \ker \pi \to S$ by $\psi (0, s) = s$.

This is clearly an isomorphism.

11. Let $K \subseteq R$. Show $(I / K) \otimes (R / K)$.

Proof: Given $a + K, b + K \in I / K$.

This means $a, b \in I$.

$(a + K) - (b + K) = (a - b) + K \in I / K$ since $a - b \in I$.

If $(a + K) \in R / K$, then $(a + K)(a + K) = a^2 + K$, $a^2 \in I$ since $I \subseteq R$. Similarly $(a + K)(a + K) \in I / K$.

Thus $I / K \otimes R / K$.
#12 (a) \(f : R \to S \) surjective hom of rings, \(I \triangleleft R \). Show \(f(I) \triangleleft S \).

Proof. Given \(a, b \in f(I) \), this means \(\exists c, d \in R \) s.t. \(a = f(c) \), \(b = f(d) \).
\[a - b = f(c) - f(d) = f(c - d) \quad \text{(since } f \text{ is a hom) \}
\]
\[= f(\text{an element of } I) \quad \text{since } c - d \in I.
\]
\[\therefore a - b \in f(I) \]

If \(a \in S \), then \(a = f(x) \) for some \(x \in R \).
\[\Rightarrow a \cdot a = f(x) \cdot f(c) = f(xc) \]
\(\forall c \in I \) since \(x \in R, xc \in I \triangleleft R \).
\[\therefore a \cdot a \in f(I) \]

#12 (b) Give an example to show \(@ \) may be false if \(f \) is not surjective.

Let \(R = \mathbb{Z} \) and \(S = \mathbb{Q} \). Let \(f : \mathbb{Z} \to \mathbb{Q} \)
be the inclusion map: \(f(n) = n \).
Then \(f \) is a hom: \(f(n + n_2) = n + n_2 = f(n) + f(n_2) \)
\[f(n_1 \cdot n_2) = n_1 \cdot n_2 = f(n_1) \cdot f(n_2) \]

But \(f(2) \) is not an ideal since \(\frac{1}{2} \in \mathbb{Q} \) but \(\frac{1}{2} \cdot f(1) = \frac{1}{2} \cdot \frac{1}{2} \notin f(2) \).
#13 If R is a commutative ring of 1 and (x) is the principal ideal generated by $x \in \mathbb{R}[x]$, prove that $\mathbb{R}[x]/(x) \cong R$.

Proof: Let $f : \mathbb{R}[x] \to R$ be

$$f(p(x)) = p(0).$$

Then f is a surjective homomorphism. (Compare with what was done in lecture on 04/29/11)

$\ker f = (x) \implies \mathbb{R}[x]/(x) \cong R$

by the 1st isomorphism theorem.

"We proved this assuming R was a field" (in class)

#23 Use the 1st isomorphism theorem to prove that $\mathbb{Z}_{20}/(5) \cong \mathbb{Z}_5$.

We proved, more generally, in class on 04/29/11, that if m/n, then

$$\mathbb{Z}_n/(m) \cong \mathbb{Z}_m.$$

We also proved that $(m) \cong \mathbb{Z}_n$, where $n = mk$.