“If ..., then ...” Statements

Definition: Statements of the form “If statement A is true, then statement B is true.” are called implications. Mathematically this is denoted by \(A \Rightarrow B \).

\[A \Rightarrow B \]

- “If A then B”
- “A implies B”
- “A only if B”
- “B if A”
- “B whenever A”
- “A is sufficient for B”
- “B is necessary for A”

Examples: Determine which statement constitutes the hypothesis (assumption) and which statement is the conclusion.

1. If \(x \in \mathbb{N} \), then \(2x \) is even.

2. If pigs could fly, then I am on Mars.

3. The value of \(x + y \) is even whenever \(x \) and \(y \) are odd.

4. I am going to carry an umbrella, only if it rains.
 - If I am going to carry an umbrella, then it means it is going to rain.
5. \(x^2 < 1 \) whenever \(x < 1 \). Note that this is a false statement!

When is the statement \(A \Rightarrow B \) true?

Is the following statement true?
If pigs could fly, then I am on Mars.

“\(A \Rightarrow B \)” says nothing about whether \(A \) or \(B \) are true or false.

The following cases are possible implications to be true.

- \(A \) - true and \(B \) - true
- \(A \) - false and \(B \) - false
- \(A \) - false and \(B \) - true

If the assumption is false, the conclusion could be anything!

Give an example illustrating each of the above cases.

Truth table for \(A \Rightarrow B \).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A \Rightarrow B)</th>
<th>(\sim (A \Rightarrow B))</th>
<th>(\sim B)</th>
<th>(A \land (\sim B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the negation of \(A \Rightarrow B \)?

Negation of if-then statement

\(A \) : “I do well in college.” \(B \) : “I will get a good job.”

- If \(A \) then \(B \):

- not(If \(A \) then \(B \)):

Theorem: The negation of $A \Rightarrow B$ is equivalent to A and (not B).

$$(A \Rightarrow B) \equiv (A \land \neg B)$$

Restate in the form of an "if-then" statement and negate the following statements.

1. “The room is quiet, if the door is closed.”

2. “I am productive in the morning, only if I have slept well.”

3. “I am an adult, if I am 30 years old.”

4. “In order to have a driver’s license, it is necessary to be at least 16 years old.”

5. “To pass MTH299, it is sufficient to have 90% on all tests and assignments.”

Open Sentences

Let

$$P(x, y) : x^2 + y^2 = 4 \quad \text{and} \quad Q(x, y) : \frac{y}{x} \in \mathbb{Z}$$

be open sentences with domain $A \times B$, where $A = \{1, 2\}$ and $B = \{0, \sqrt{3}\}$. Determine for what elements in the domain the statement $P(x, y) \Rightarrow Q(x, y)$ is true.
Inverse of an if-then statement

“If I am 30 years old, then I am an adult.”

The **inverse** of the above statement is:

“If I am not 30 years old, then I am not an adult.”

Theorem: The **inverse** of the implication “If A, then B.” is the implication “If not(A), then not(B.).”

Is the inverse, in general, equivalent to the original statement?

Think of an example when a statement and its inverse are equivalent and when they are not.

Necessary Conditions

“In order to pass MTH299, it is necessary that a student completes most daily homework assignments.”

What is the assumption and what is the conclusion?

Definition: A necessary condition is one that must hold in order for the result to be true. It does not guarantee that the result is true.

\[A \text{ is necessary for } B \text{ is equivalent to } B \text{ is true only if } A \text{ is true}. \]

which is equivalent to \(B \Rightarrow A \).

\[x \in (-1, 1) \text{ is necessary for } x^2 - 1 < 0. \]
Sufficient Conditions

“To pass MTH299, it is sufficient to have 90% on all tests and assignments.”

What is the assumption and what is the conclusion?

Definition: A **sufficient** condition is one such that if it holds, the result is guaranteed to be true. The conclusion may be true even if the condition is not satisfied.

\[A \implies B \]

\[x \in (0, 1) \] is sufficient for \(x^2 - 1 < 0. \)

\[x \in (-1, 1) \] is sufficient for \(x^2 - 1 < 0. \)

Necessary and Sufficient Conditions

Fill in the blank with **necessary**, **sufficient** or **necessary and sufficient**.

1. \(x > 1 \) is ______________________ for \(x^2 > 1 \)

2. \(x \in \mathbb{N} \) is ______________________ for \(x \geq 0 \)

3. \(|x| > 1 \) is ______________________ for \(x^2 > 1 \)

4. “Mary earned an A in MTH299.” is ______________________ for “Mary passed MTH299.”

5. “The function \(f \) is continuous at \(x = c \).” is ______________________ for “The function \(f \) has a derivative at \(x = c \).”
Contrapositive

\(A \Rightarrow B \)

“If I am 30 years old, then I am an adult.”

We saw that the inverse of the above statement is:

\(\text{not}(A) \Rightarrow \text{not}(B) \)

“If I am not 30 years old, then I am not an adult.”

and it is not equivalent to the original one.

Can you construct an implication using \(\text{not}(A) \) and \(\text{not}(B) \), which is equivalent to the original one?

The contrapositive of the statement \(A \Rightarrow B \) is \(\text{not}(B) \Rightarrow \text{not}(A) \).

\[
\begin{array}{|c|c|c|c|}
\hline
A & B & A \Rightarrow B & \sim A & \sim B & (\sim B) \Rightarrow (\sim A) \\
\hline
T & T & T & T & T \\
T & F & F & T & T \\
F & T & T & F & T \\
F & F & T & T & T \\
\hline
\end{array}
\]

Theorem: A statement and its contrapositive are equivalent.

Find the inverse and the contrapositive of the following statements.
1. If Jane has grandchildren, then she has children.
2. If \(x = 1 \), then \(x \) is a solution to \(x^2 - 3x + 2 = 0 \).

\(A \Rightarrow B \) is equivalent to \((\text{not } B) \Rightarrow (\text{not } A) \)

Sometimes it is easier to prove the contrapositive than it is to prove the forward statement.

Example: Prove that \(\emptyset \subseteq A \), for any set \(A \).

• If \(x \in \emptyset \Rightarrow x \in A \)

• Contrapositive: