READ THIS FIRST: This homework assignment is different. After your solutions are graded and returned, you will be asked to make corrections, revise your solutions, and re-submit the entire assignment. Your revised solutions will again be graded. So, effectively, this assignment is worth double points.

The purpose of the “submit, revise, re-submit” process is to provide you with an opportunity to work on improving your mathematical writing. Your writing will be carefully scrutinized and the grade you earn will reflect this.

Directions: Read Chapter 7. Then write a solution to each of the exercises below. Each solution must begin with a complete and accurate restatement of the exercise. These exercises are modified versions of some of the exercises in Chapter 7.

1. Two recursively defined sequences \(\{a_n\} \) and \(\{b_n\} \) of positive integers have the same recurrence relation: for each \(n \geq 3 \),

\[
a_n = 2a_{n-1} + a_{n-2} \quad \text{and} \quad b_n = 2b_{n-1} + b_{n-2}.
\]

The initial values for \(\{a_n\} \) are \(a_1 = 1 \) and \(a_2 = 3 \), whereas the initial value for \(\{b_n\} \) are \(b_1 = 1 \) and \(b_2 = 2 \).

Determine whether each of the following conjectures is true or false.

Conjecture A: \(a_n = 2^{n-2} \cdot n + 1 \) for every integer \(n \geq 2 \).

Conjecture B: \(b_n = \frac{1}{2\sqrt{2}} [(1 + \sqrt{2})^n - (1 - \sqrt{2})^n] \) for every integer \(n \geq 2 \).

2. Express the statement below in symbols (for example, using the symbols \(\exists, \forall, \implies, \lor, \land, \iff, \text{and} \sim \)). Then prove the statement.

For every positive real number \(a \) and positive rational number \(b \), there exist a real number \(c \) and irrational number \(d \) such that \(ac + bd = 1 \).

3. Prove or disprove: for every two sets \(A \) and \(B \), we have that \((A \cup B) - B = A \).

4. Prove or disprove: for every rational number \(a/b \) such that \(a, b \in \mathbb{N} \), there exists a rational number \(c/d \) such that \(c \) and \(d \) are positive odd integers and \(0 < c/d < a/b \).

5. Prove or disprove: there exist positive integers \(x \) and \(y \) such that \(x^2 - y^2 = 101 \).