Please write your solutions on a different piece of paper. Please refer to the course syllabus for a detailed explanation of how you should write homework solutions and how they will be graded.

Section 4.1

4.2 (4.2 in second edition) Let \(a, b \in \mathbb{Z} \), where \(a \neq 0 \) and \(b \neq 0 \). Prove that if \(a | b \) and \(b | a \), then \(a = b \) or \(a = -b \).

4.4 (4.4 in second edition) Let \(x, y \in \mathbb{Z} \). Prove that if \(3 \nmid x \) and \(3 \nmid y \), then \(3 | (x^2 - y^2) \).

4.6 (4.6 in second edition) Let \(a \in \mathbb{Z} \). Prove that if \(3 | 2a \), then \(3 | a \).

Section 4.2

4.14 (4.10 in second edition) Let \(a, b, n \in \mathbb{Z} \), where \(n \geq 2 \). Prove that if \(a \equiv b \pmod{n} \), then \(a^2 \equiv b^2 \pmod{n} \).

4.18 (not in second edition) Let \(m, n \in \mathbb{N} \) such that \(m \geq 2 \) and \(m | n \). Prove that if \(a \) and \(b \) are integers such that \(a \equiv b \pmod{n} \), then \(a \equiv b \pmod{m} \).

4.22 (4.16 in second edition) Let \(n \in \mathbb{Z} \). Prove each of the following statements.

(a) If \(n \equiv 0 \pmod{7} \), then \(n^2 \equiv 0 \pmod{7} \).

(b) If \(n \equiv 1 \pmod{7} \), then \(n^2 \equiv 1 \pmod{7} \).

(c) If \(n \equiv 2 \pmod{7} \), then \(n^2 \equiv 4 \pmod{7} \).

(d) If \(n \equiv 3 \pmod{7} \), then \(n^2 \equiv 2 \pmod{7} \).

(e) For each integer \(n \), \(n^2 \equiv (7 - n)^2 \pmod{7} \).

(f) For every integer \(n \), \(n^2 \) is congruent to exactly one of 0, 1, 2, or 4 modulo 7.