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We present a study of the effect of finite detector integration/exposure time E, in
relation to interrogation time interval 1t, on analysis of Brownian motion of small
particles using numerical simulation of the Langevin equation for both free diffusion
and hindered diffusion near a solid wall. The simulation result for free diffusion
recovers the known scaling law for the dependence of estimated diffusion coefficient
on E/1t, i.e. for 0 6 E/1t 6 1 the estimated diffusion coefficient scales linearly as
1 � (E/1t)/3. Extending the analysis to the parameter range E/1t> 1, we find a new
nonlinear scaling behaviour given by (E/1t)�1[1 � ((E/1t)�1)/3], for which we also
provide an exact analytical solution. The simulation of near-wall diffusion shows that
hindered diffusion of particles parallel to a solid wall, when normalized appropriately,
follows with a high degree of accuracy the same form of scaling laws given above
for free diffusion. Specifically, the scaling laws in this case are well represented by
1 � ((1 + ✏)(E/1t))/3, for E/1t 6 1, and (E/1t)�1[1 � ((1 + ✏)(E/1t)�1)/3], for
E/1t > 1, where the small parameter ✏ depends on the size of the near-wall domain
used in the estimation of the diffusion coefficient and value of E. For the range of
parameters reported in the literature, we estimate ✏ < 0.03. The near-wall simulations
also show a bias in the estimated diffusion coefficient parallel to the wall even in
the limit E = 0, indicating an overestimation which increases with increasing time
delay 1t. This diffusion-induced overestimation is caused by the same underlying
mechanism responsible for the previously reported overestimation of mean velocity
in near-wall velocimetry.
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1. Introduction

Brownian fluctuation is a stochastic process that is important to many scientific
and engineering applications, and is often the dominant part of the motion of
nano-particles and single molecules. In simple Brownian motion, suspended particles
exhibit a random fluctuation due to many uncorrelated collisions from the smaller
neighbouring molecules of the fluid. From the mathematical viewpoint, this stochastic
process on a coarse time scale (much larger than particle relaxation time) is modelled
with a Gaussian probability density function (PDF) with a standard deviation
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proportional to
p

D1t, where D is the particle diffusion coefficient and 1t is the
time period over which the fluctuating motion is interrogated. Thus, an ensemble
data of particle displacement measurements over a known time interval 1t would
allow the determination of the value of the diffusion coefficient, D. The diffusion
coefficient can also be separately estimated from the Stokes–Einstein equation, based
on the effective size of the particle.

The experimental measurement of the diffusion coefficient of particles typically
relies on methods such as Taylor–Aris dispersion (Belongia & Baygents 1997),
spin-echo NMR (Dunlop, Harris & Young 1992), dynamic light scattering (Dunlop
et al. 1992) and total internal reflection microscopy (Bevan & Prieve 2000; Banerjee
& Kihm 2005; Oetama & Walz 2005; Huang & Breuer 2007). Direct optical methods
based on tracking the motion of individual particles have been receiving increased
attention, in particular where the problem of study involves measuring a spatially
varying diffusion, such as hindered diffusion of particles near surfaces (Bevan &
Prieve 2000; Banerjee & Kihm 2005; Oetama & Walz 2005; Huang & Breuer
2007; Kazoe & Yoda 2011) and particle motion in living cells (Gelles, Schnapp
& Sheetz 1988; Qian, Sheetz & Elson 1991). Single-particle tracking promises a
higher spatial resolution and, when combined with the benefit of a thin (usually
100–300 nm) evanescent wave illumination region near a surface, allows imaging
of small particles with high signal-to-noise ratio (Zettner & Yoda 2003; Jin et al.
2004; Sadr et al. 2004; Pouya et al. 2005). Typical experimental implementations
of particle-tracking methods do not, however, record the instantaneous location
of a particle and are constrained by the temporal resolution characteristics of the
measurement. Instead, the average position over the finite sampling period, E, of
the detector is the quantity that is measured. In optical measurements with a CCD
camera, for example, the sampling period would be the integration or exposure
period of the camera when using a continuous light source. As a result, 1t is
no longer the only relevant time scale; the averaging time period E introduces a
second time scale that also influences the measured displacement fluctuation and
the corresponding interpretation of diffusion coefficient (see illustration in figure 1).
In actual particle-tracking experiments, other localization errors connected with the
noise and limited spatial resolution of the detector can additionally compromise the
accuracy of particle displacement measurement (Thompson, Larson & Webb 2002;
Montiel, Cang & Yang 2006; Berglund 2010; Michalet 2010).

The issue of finite integration/exposure time becomes especially important as the use
of nano-particles of decreasing size becomes more commonplace, e.g. in near-surface
measurements with evanescent wave illumination using fluorescent coated particles
(Zettner & Yoda 2003; Jin et al. 2004; Sadr et al. 2004) and quantum-dot (QD)
nano-particles (Pouya et al. 2005, 2008). Such measurements often require longer
detection exposure/integration periods to compensate for the much reduced optical
signal of nano-particles. The longer integration period, coupled with the much larger
diffusivity of nano-particles, can result in measured displacements that are significantly
different from those based on instantaneous positions. The finite exposure/integration
time has also been a factor in studies of single-molecule tracking within plasma
cells (Ritchie et al. 2005; Destainville & Salomé 2006). However, these studies are
focused on the particular case of confined diffusion within a cell (rectangular or
circular box), which inherently introduces other time scales that complicate isolating
the influence of the exposure time by itself. While analysing the source of errors
in particle-tracking microrheology, Savin & Doyle (2005) studied the contribution of
a finite exposure time using theory and experiments and showed a ‘dynamic error’
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FIGURE 1. (Colour online) One-dimensional trajectory of a single Brownian particle in
time. Solid line: instantaneous trajectory, solid symbol: instantaneous position at time
interval 1t, open symbol: averaged position within exposure period E. A detector with
averaging period E would report particle displacement 1x̃ instead of 1x from an
instantaneous trajectory.

in mean-squared displacement estimation was introduced from the particle motion
during the exposure time and that the error scaled linearly with the exposure time.

The goal of this article is to build on Savin and Doyle’s work on free diffusion and
address the influence of the second time scale, imposed by the observation averaging
time E (or in non-dimensional form E/1t), on estimation of displacement fluctuation
due to Brownian motion when the particle motion is hindered by the presence of a
solid wall. In particular, our study addresses the basic solution to Brownian fluctuation
and the nature of its mathematical form over the entire range of the control parameter
E/1t (i.e. both smaller and larger than unity). While the motivation behind this study
originates from the experimental constraints of finite E, and problem definition is
informed by typical experimental arrangements, the study here is purely fundamental
in nature.

The approach taken here is numerical simulation of Brownian motion based on
the Langevin equation. This approach avoids the uncertainties in experiments related
to noise and localization errors, thus allowing us to focus on the integration time
issue alone. We first consider the simpler case of free diffusion, for which an exact
analytical solution already exists over the range E/1t 6 1 (Savin & Doyle 2005),
and confirm complete agreement between simulation results and exact solution. In
addition, we present a new derivation for the exact solution that covers both regions
of the non-dimensional parameter range (E/1t 6 1 and E/1t > 1), which, as we will
demonstrate, exhibit two different scaling laws. We then consider the more challenging
case of Brownian motion of nano-particles and estimation of the parallel diffusion
coefficient near a solid wall where the motion is hindered, with spatially varying
diffusion. In this case an exact analytical solution would be difficult to obtain, and
to our knowledge does not exist.
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2. Brownian simulation

The problem statement can be described with the help of figure 1, illustrating a
representative one-dimensional path of an arbitrary particle in space under Brownian
motion. The instantaneous trajectory shown on the upper plot is sampled at certain
time ticks (solid symbols) separated by time step 1t. The displacement (1x) measured
between these instantaneous locations is distributed normally with a standard deviation
of

p
2D1t according to the theory of Brownian motion. The averaged positions over

time interval E recorded by a detector form the trajectory shown in the lower
plot of figure 1, with open symbols representing the recorded positions over each
exposure/integration time period E. It is evident that, in general, the averaged and
instantaneous locations do not correspond to one another and therefore the measured
displacements (1x̃) are different from those representing the actual Brownian motion.
We chose to use numerical simulations to study how the parameter E (or E/1t in
non-dimensional form) affects the displacement distribution and the corresponding
estimated diffusion coefficient.

The Brownian motion of suspended particles has been successfully simulated in
a variety of flowing and non-flowing situations with different boundary conditions.
Usually, two general approaches, based on Langevin or Fokker–Planck formulations,
are used to numerically simulate the motion of a group of particles in the solution
(Ermak & Mccammon 1978). With Langevin’s approach the time–space trajectories of
individual particles are calculated by integrating the appropriate equation of motion
over time, while in the Fokker–Plank description the time evolution of the particle
phase-space distribution function is directly obtained by solving the Fokker–Planck
differential equation. Here we employ the former method to simulate the motion of
individual nano-particles.

The simulation of Brownian motion using Langevin equations has been successfully
demonstrated (Adamczyk, Siwek & Szyk 1995; Sholl et al. 2000; Sadr, Li & Yoda
2005; Unni & Yang 2005; Huang, Guasto & Breuer 2009). The Langevin equation
for a Brownian particle immersed in a fluid medium can be written as (Unni & Yang
2005):

dr = D(t)F(t)
kBT

�t + rD(t)�t + (1r)B , (2.1)

where dr is change in the position vector of the particle, D is the diffusivity tensor
(accounting for the dependence of the diffusion coefficient on the direction of the
motion), F is the total external force acting on the particle, (1r)B is the random
Brownian displacement of the particle, �t is the time interval, T is the temperature
of the fluid and kB is the Boltzmann constant. The simulation starts with a group
of particles randomly distributed in a predefined spatial domain and then the spatial
coordinates of each particle are updated by integrating the equation of motion (2.1)
over a small finite time step, while all terms are evaluated at the starting time. Since
often a dilute solution of particles is used in particle-tracking measurements, we
shall ignore any inter-particle interactions in the simulations presented here. With
this assumption and accounting for anisotropic diffusion near surfaces, the diffusivity
tensor is reduced to a vector of the form D = D1[�, �, ⇠ ], where D1 is the diffusion
coefficient in free medium based on the Stokes–Einstein equation and � and ⇠ are
the hindered diffusion correction factors parallel and normal to the wall, respectively,
which can be approximated by (Goldman, Cox & Brenner 1967; Bevan & Prieve
2000):

⇠ = 6h2 + 2ah
3h2 + 9ah + 2a2

(2.2a)
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FIGURE 2. (Colour online) Near-surface imaging with evanescent wave illumination.
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In these expressions a is the particle radius and h is the particle separation distance
from the wall (see figure 2). In this study we have ignored the electrostatic and
van der Waals forces. The contribution of gravity, though included in the simulation,
was negligible due to the small size of the nano-particles. We should mention that,
based on preliminary simulations, the results reported here appear to still hold when
electrostatic forces, and the resulting non-uniform particle distribution near a surface,
are included; see the Conclusions. The last term in (2.1), representing the random
Brownian motion, is modelled as a normal distribution N(0,

p
2D�t). For the simple

case of pure diffusion in free medium and in the absence of gravity, the right-hand
side of (2.1) reduces to this last term only.

The simulation is carried out using the non-dimensional form of (2.1). The
particle radius, a, and the time to diffuse across this radius, a2/D1, are used as
length and time scales of normalization, respectively. A total of 105 particles are
uniformly distributed within a predefined region in space (typically 100a–150a in
all directions). The trajectory of each individual particle is tracked over an infinite
domain (�1 < x, y, z < 1) using (2.1), where all the terms are updated in each time
step. Following previous studies (Ermak & Mccammon 1978; Huang et al. 2009),
the (non-dimensional) integration time step �t is chosen as 10�3, which is small
enough to ensure numerical accuracy and large enough compared to the particle
relaxation time (⇡10�5), as necessary for validity of the diffusion model. For the
near-wall simulations, due to the discrete and finite nature of the computational
process, a particle may attempt to enter the solid wall during the integration time
step even with a short time step (despite the fact that with the assumption of a
no-slip boundary condition, the diffusion coefficient vanishes and particles come to
rest at the surface of the solid). To avoid such events, we use a simple specular
reflection on the solid wall (i.e. the momentum component normal to the wall
changes sign). Since the number of such occurrences is very small (10�5 %–10�3 %
of total events calculated), the specular reflection assumption does not affect the final
statistical parameters computed from the simulation. In near-wall simulations particle
trajectories are tracked over an infinite domain in x, y and a semi-infinite domain
in z, i.e. a 6 z < 1.
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The outcome of the simulation is the trajectory x(t) of each particle calculated
with the fine resolution �t. The effect of detector finite exposure/integration period is
modelled by simply integrating the path of individual particles during the predefined
exposure time E, i.e.:

x̃ (tk) = 1
E

Z tk+E

tk

x(t)dt, (2.3)

where x̃ is the average position of the particle within the exposure time E at time tick
tk, while x is the instantaneous position. We note that in particle-tracking experiments,
x̃ is usually inferred from the average intensity distribution of the particle image on
the detector, typically through a best-fit over its intensity distribution. The influence
of such approaches has been considered under particle localization errors (e.g. see
references cited in the Introduction) and is outside the scope of the current study. The
simulation is typically carried out for 107 time steps and the particle displacements 1x̃
over the prescribed time period 1t are used to estimate the diffusion coefficient D̃
according to D̃ = h(1x̃)2i/21t, where h(1x̃)2i represents the expected value of mean
square displacement. For the case of free diffusion, the diffusion vector in (2.1) is a
constant; therefore displacements from all the particles within the simulation can be
used to evaluate this diffusion coefficient.

For near-wall simulations, however, diffusion is a function of particle distance from
the wall. The estimated diffusion coefficient depends, therefore, on the extent of
the domain normal to the wall used to evaluate this coefficient. In order to specify
this domain size H, we use an approach that is borrowed from experiments. In
experimental near-wall measurements based on evanescent wave illumination, the
extent of the observed domain H is determined by the thickness of the illumination
region (i.e. the evanescent layer thickness), camera detection capability and the
intensity threshold used in the image processing to identify the particles (figure 2). To
include a similar processing in the simulation data, an equivalent brightness (intensity
value) is assigned to each particle in the Langevin simulation, depending on the
particle distance from the wall at each instant of time. In near-wall measurements
using total internal reflection microscopy, the distance-dependent intensity is given by
the exponential intensity distribution of the evanescent field, i.e.:

I(z) = e�(z�a/dp), (2.4)

where I(z) is the normalized intensity of the particle located at distance z from
the wall relative to a reference value (chosen to be the intensity of a particle in
contact with the wall) and dp is the penetration depth of the evanescent field. In
the simulations dp/a is set to 13, consistent with previous near-wall QD imaging
experiments (dp ⇡ 100 nm, a ⇡ 8 nm) (Pouya et al. 2008). Other values of dp/a can
be considered easily, if needed, by interrogating the results for different values of
intensity threshold, as described next.

In near-wall simulations, the intensity value is calculated for all the particles in each
time step of the simulation. A detector with integration/exposure time E would report
the average intensity of the particle over the portion of its trajectory in each exposure,
i.e. for a given particle the average intensity at time tk is:

Ĩ (tk) = 1
E

Z tk+E

tk

I(z(t))dt. (2.5)
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Particles are considered ‘detectable’ if their average intensity Ĩ (over integration period
E) is above a prescribed intensity threshold IT . Therefore, in near-wall simulations
only particles that are detectable at the beginning and end of the interrogation
time interval 1t are kept in the data ensemble for further processing, and their
corresponding particle displacements 1x̃ are used to estimate the diffusion coefficient
D̃. We note that the prescribed intensity threshold IT essentially sets the size of the
near-wall domain H that gets used in the estimation of diffusion coefficient. The
relation between IT and H is direct and unambiguous only in the limit of E ! 0,
given by H/a = 1 � (dp/a) ln(IT), according to (2.4). When E 6= 0, the direct relation
between the measured particle intensity and its location within the evanescent layer is
lost, e.g. the position corresponding to a particle with average intensity Ĩ > IT (i.e. a
detectable particle) may be beyond the distance H, depending on the extent of the
Brownian fluctuation.

3. Results and discussion

3.1. Free diffusion
We first focus on the case of free diffusion (with prescribed diffusion coefficient
D1) to single out the effect of the exposure/integration time period E. The diffusion
coefficients D̃ estimated from the computed mean square displacement of particle
displacements are illustrated in figure 3 over a broad range of interrogation time
intervals 1t and selected values of integration periods E 6 1t. We note that in
the case of E = 0 the estimated diffusion coefficient from simulations recovers the
prescribed D1 and is independent of the interrogation time interval 1t, as expected.
However, for any non-zero value of sampling/interrogation period the estimated
diffusion coefficient D̃ becomes dependent on 1t, starting with low estimated values
at small 1t and asymptotically approaching the correct particle diffusion coefficient
D1 at large values of 1t. The scaling behaviour of the data becomes apparent once
the curves in figure 3 are rescaled in terms of E/1t, as depicted in figure 4. We can
see that all the simulation data for 06E/1t6 1 collapse onto a single curve showing
a linearly decreasing D̃/D1 versus E/1t with a �1/3 slope. The lowest value of
the estimated diffusion coefficient would be D̃/D1 = 2/3, which occurs at E/1t = 1
(this would be the case when the camera image frame rate sets the interrogation time
interval 1t and the camera shutter is fully open).

We now present a theoretical approach to obtain a closed-form solution for the
scaling behaviour revealed by the simulations. The approach relies on methods of
stochastic differential equations (Øksendal 1998) and details of the steps are given
in appendix A. We consider Brownian motion Bt(!) for particle ! in time t, such
that it is a continuous function and follows a Gaussian process with an arbitrarily
selected mean of zero and a standard deviation of t. The process also has independent
increments, i.e. for 0 6 t1 6 · · · 6 tk, Bt1, Bt2 � Bt1, . . . , Btk � Btk�1 are independent.
In this description, Bt is connected to the position of the Brownian particle with a
diffusion coefficient of D1 according to:

xt =
p

2D1Bt. (3.1)

We sample the Brownian motion (in experiment or simulation) at time ticks tk = k1t
and at each time tick the mean position is calculated over the interval (tk, tk + E) with
the integration/exposure period E in the range 0 6 E 61t, i.e.:

x̃tk = 1
E

Z tk+E

tk

xtdt. (3.2)
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FIGURE 3. (Colour online) Estimated diffusion coefficient versus time delay at various
exposure times for free diffusion over the range E/1t 6 1.
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FIGURE 4. (Colour online) Estimated diffusion coefficient versus E/1t for free diffusion
over the range E/1t 6 1. Only selected points from figure 3 are shown to reduce clutter.
The data collapse onto a line with slope �1/3.

Then we estimate the diffusion coefficient with:

D̃ = h�x̃tk+1 � x̃tk

�2i
21t

= 1
21t

hx̃2
k+1 � 2x̃tk+1 x̃tk + x̃2

tki, (3.3)

where the symbol h i stands for the expected value. By iterated integration and
independent increments we know that (see appendix A):

hx̃tk x̃tk+1i = 2D1(tk + E/2) and hx̃2
tki = 2D1(tk + E/3). Therefore, the estimated

diffusion coefficient from (3.3) reduces to

D̃
D1

= 1 � 1
3

✓
E
1t

◆
for 0 6 E/1t 6 1. (3.4)
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FIGURE 5. (Colour online) Estimated diffusion coefficient for free diffusion over the range
E/1t > 1. The lower range is also shown for completion. The analytical solution is given
by (3.5).

This closed-form exact solution provides the fundamental foundation for the scaling
result described earlier on the basis of the simulation data. We note that Savin
& Doyle (2005) obtained the same solution while analysing the source of errors
in particle-tracking microrheology. Their solution method considered the averaging
process in the spatial frequency domain and took advantage of Fourier transform
techniques. The new derivation method we have presented will allow us to also
extend the analysis to the parameter range E/1t > 1, as described next.

We have so far focused the discussion on the parameter range E/1t 6 1, as
motivated by a typical imaging system where the maximum exposure (fully open
shutter) is limited by the inter-frame time, hence E/1t = 1. We now consider the case
when the integration/exposure time E is greater than the interrogation time interval
1t, E/1t > 1. Experimentally, this would be achieved by using two independent
detectors that record images with a time delay 1t relative to each other. Although
this may not represent a typical imaging configuration, the mathematical nature of
the solution over this parameter range is nevertheless an interesting question.

The estimated diffusion coefficients from the simulations for multiple E and
1t values, with E > 1t, are illustrated in figure 5 versus E/1t. Interestingly, the
normalized data over the range E/1t > 1 also collapse onto a single curve, which
is now nonlinear, in contrast to the linear scaling law over the range E/1t 6 1.
This collapse of the simulation data prompted us to seek the exact solution for the
functional form of the solution using the theoretical approach presented earlier. In
re-evaluating (3.3), we note that the term hx̃2

tki remains unchanged and, according to
details given in appendix A, hx̃tk x̃tk+1i = D1(tk + 1t/2 � (1t2/E)/2 + (1t3/E2)/6 +
E/3), arriving at the final result:

D̃
D1

=
✓

E
1t

◆�1

� 1
3

✓
E
1t

◆�2

=
✓

E
1t

◆�1
"

1 � 1
3

✓
E
1t

◆�1
#

for E/1t > 1. (3.5)

This exact solution is added to figure 5 and perfectly complements the simulation data.
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FIGURE 6. (Colour online) Apparent diffusion coefficient of particles near a solid wall
over the range E/1t 6 1. Intensity threshold IT = 0.05 (equivalent to H = 40a, H ⇠= 3dp
for E = 0).

3.2. Near-wall hindered diffusion
We now return to the simulation of (2.1) for the case of diffusion of particles near
a solid wall. The particles are initially distributed uniformly in the near-wall region
over the extent of 1 < z/a < 150. This region, being more than ten times larger than
the evanescent layer thickness, is large enough to ensure the particle distribution
remains uniform over the simulation time frame within the near-wall sub-region used
in calculating particle displacement statistics (a uniform distribution is expected due to
absence of electrostatic interactions in the simulations). We first illustrate the general
nature of the results for the intensity threshold value of IT = 0.05 (corresponding
to near-wall domain size H = 40a, or H ⇠= 3dp, in the limit of zero exposure),
i.e. only particles whose average intensity is less than this value are used in the
data analysis. This value of intensity threshold is chosen based on the typical values
used in previous experiments (Pouya et al. 2005, 2008). Results for other values of
intensity threshold will follow. For the purpose of this article, we focus on diffusion
of particles parallel to the wall and particle displacements are calculated using only
the in-plane components of the particle 3D trajectories.

Figure 6 shows the apparent in-plane diffusion coefficient D̃k estimated from
simulations for multiple integration/exposure values versus the time delay 1t, with
E 6 1t. A trend similar to that observed in figure 3 for free diffusion is also
evident here, i.e. for any non-zero exposure E the estimated diffusion coefficient D̃k
strongly depends on 1t, starting with a low value at small 1t and asymptotically
approaching the corresponding value Dk0 for E = 0 at large 1t. There is, however, a
fundamental difference in these near-wall results in two respects. First, we note that
the value Dk0 in the limit of zero exposure is less than the free-diffusion coefficient
D1 far away from the wall. Since Dk0 represents the spatially averaged diffusion
coefficient of particles within the observed region near the wall (in this case, over
domain size H = 40a, or H ⇠= 3dp), this result is expected due to near-wall hindered
diffusion. Second and more importantly, however, the estimated diffusion Dk0 at
zero integration/exposure (E = 0) shown in figure 6 is no longer a constant and
independent of the interrogation time interval 1t, as in free diffusion; the apparent
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FIGURE 7. (Colour online) Apparent diffusion coefficient of particles near a solid wall for
exposure E = 0 and multiple intensity thresholds. Near-wall domain size H is indicated for
each intensity threshold.

diffusion coefficient gradually increases as 1t increases. This dependence on 1t
becomes even more significant for higher intensity thresholds (smaller H values), as
shown in figure 7.

This behaviour can be qualitatively explained in terms of the asymmetric diffusion
of particles near the wall. During the interrogation time interval 1t, even though
particles are free to diffuse in and out of the predefined observation domain H,
near a solid wall particles are more likely to diffuse away from the wall than
towards the wall due to near-wall hindered diffusion. As a result, a particle is
more likely to ‘sample’ regions farther away from the wall (with a higher diffusion
coefficient approaching free diffusion D1) than closer to the wall (with a smaller
diffusion coefficient approaching zero), leading to an ‘apparent’ diffusion that is
biased towards D1. With increasing time interval 1t, this asymmetric behaviour
becomes increasingly more pronounced, which drives the bias in the observed
‘average’ diffusion coefficient increasingly towards D1. The effect also becomes
more pronounced as the domain size (H) shrinks. The diffusion-induced bias just
described for the near-wall diffusion coefficient has also been observed in near-wall
velocimetry studies, where the asymmetric diffusion leads to a larger apparent mean
velocity that increases with delay time (Sadr et al. 2007; Pouya et al. 2008; Huang
et al. 2009).

When considering the scaling behaviour of the near-wall diffusion estimates D̃k in
figure 6 for non-zero integration/exposure E, we observe that the physical process that
leads to the bias described above in the limiting value of the estimated diffusion Dk0
at E = 0, and therefore its dependence on 1t, would also occur regardless of the finite
exposure time E 6= 0. The correct normalization of apparent diffusion coefficient D̃k
should account for this bias and, therefore, using Dk0 for scaling is expected to be
more appropriate than D1. Once the data in figure 6 for intensity threshold IT = 0.05
are rescaled in terms of D̃k/Dk0 and plotted versus E/1t, see figure 8, the data do
in fact collapse onto a single curve, apparently following the same linear scaling law
as in free diffusion, with a �1/3 slope. Upon closer examination, however, we find
that the simulation data in figure 8 deviate ever so slightly from the �1/3 slope. The
deviation becomes more apparent at higher intensity thresholds (i.e. smaller near-wall
domain size H). This is illustrated in figure 9 for the case of IT = 0.4, where the
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FIGURE 8. (Colour online) Apparent diffusion coefficient normalized with the diffusion
coefficient at zero exposure for near-wall hindered diffusion over the range E/1t 6 1.
Intensity threshold IT = 0.05.
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FIGURE 9. (Colour online) Apparent diffusion coefficient normalized with the diffusion
coefficient at zero exposure for near-wall hindered diffusion over the range E/1t 6 1.
Intensity threshold IT = 0.4. The dashed line corresponding to free diffusion has a slope
of �1/3.

departure from the �1/3 slope becomes more and more evident with increasing values
of E.

The theoretical underpinning behind the results just described does not exist; in
the case of diffusion near a solid wall where the motion is hindered, with spatially
varying diffusion, it would be difficult to obtain an exact analytical solution, and to
our knowledge it does not exist. However, our results show that the form of the
scaling law obtained for free diffusion applies with a high degree of accuracy to
the parallel diffusion coefficient for near-wall hindered diffusion. In particular, the
normalized parallel diffusion coefficient can be written as a slightly modified form
of the free-diffusion scaling law (equation (3.4)) by adjusting the �1/3 linear slope
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FIGURE 10. (Colour online) The deviation of hindered diffusion scaling law from free
diffusion (parameter ✏ in (3.6)) for several values of intensity threshold over the range
E/1t 6 1. For studies in the literature to date, E < 600.

by a small fraction ✏, as indicated below:

D̃k
Dk0

= 1 � 1
3
(1 + ✏)

✓
E
1t

◆
for 0 6 E/1t 6 1. (3.6)

Figure 10 summarizes the values of ✏ for multiple intensity thresholds versus
integration/exposure time E over the range E/1t 6 1. In each case, ✏ was arrived at
from the least-squares fit of D̃k/Dk0 versus E/1t simulation data (e.g. figures 8, 9)
to (3.6). The resulting fit to data was excellent, with the average deviation between
simulation data and (3.6) varying between zero and approximately 0.005 over the
entire range of E values shown in figure 10. It is noted from this figure that the
values of ✏ are indeed small. For studies in the literature to date, values of E are
limited to E < 600, corresponding to ✏ < 0.03 in figure 10.

The near-wall diffusion results discussed above over the parameter range E/1t 6 1
are extended next to E/1t > 1 by considering the apparent in-plane diffusion
coefficient D̃k estimated from near-wall simulations for multiple E and 1t values,
with E > 1t, and different values of intensity threshold IT . Results for IT = 0.05 are
given in figure 11 in terms of D̃k/Dk0 versus E/1t. Interestingly, the normalized data
over the range E/1t > 1 also collapse onto a single curve, a nonlinear curve whose
functional form appears to be the same as that for the case of free diffusion (see
figure 5 and (3.5)). Similar to the case of E/1t 6 1, we find upon close inspection
that there is a small deviation between the simulation results in figure 11 and the
free-diffusion theory given by (3.5), and that the deviation becomes more noticeable
at higher intensity thresholds, though still small.

In the absence of an exact theoretical solution, we consider the same approach
as that demonstrated earlier in the case of E/1t 6 1 and find that the form of the
scaling law obtained for free diffusion over E/1t > 1 applies with a high degree of
accuracy to the parallel diffusion coefficient for near-wall hindered diffusion as well.
In particular, the normalized parallel diffusion coefficient can be written as a slightly
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FIGURE 11. (Colour online) Normalized diffusion coefficient for near-wall hindered
diffusion over the range E/1t > 1 for intensity threshold IT = 0.05. The lower range is
also shown for completion. The analytical solution is given by (3.7).

modified form of the free-diffusion scaling law for E/1t > 1 (i.e. (3.5)) by adjusting
the �1/3 constant by a small fraction ✏, as indicated below:

D̃k
Dk0

=
✓

E
1t

◆�1
"

1 � 1
3
(1 + ✏)

✓
E
1t

◆�1
#

for E/1t > 1. (3.7)

Corresponding values of ✏ are plotted in figure 12 versus integration/exposure time
E over the range E/1t > 1 for different intensity thresholds, where the ✏ values
were obtained from the least-squares fit of D̃k/Dk0 versus E/1t simulation data to
(3.7). As in the case of E/1t 6 1, the resulting fit to data was again excellent, with
the average deviation between simulation data and (3.7) varying between zero and
approximately 0.005 over the entire range of E values shown in figure 12. One can
note that, although the trends for ✏ in E/1t > 1 are similar to those of E/1t 6 1, the
actual values are different and tend to be slightly larger for E/1t > 1. Nevertheless,
values of ✏ are still small for a wide range of parameters and for the studies reported
in the literature to date (i.e. E < 600) we expect ✏ < 0.03, based on figure 11.

4. Concluding remarks

Numerical simulation of Brownian diffusion of small particles was carried out
to determine the influence of finite sampling time E, relative to interrogation time
interval 1t, on the estimation of diffusion coefficient for both free diffusion and
near-wall hindered diffusion. Results of free-diffusion simulations recovered the
known linear scaling law, found by Savin & Doyle (2005), for dependency of the
estimated diffusion coefficient D̃ on E/1t over the range 0 6 E/1t 6 1, given by
D̃/D1 = 1 � (1/3)(E/1t). Results were extended to the parameter range E/1t > 1,
where we found data collapse onto a new nonlinear scaling law, whose functional
form was shown to have the exact analytical solution given by

D̃
D1

=
✓

E
1t

◆�1
"

1 � 1
3

✓
E
1t

◆�1
#

. (4.1)
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FIGURE 12. (Colour online) The deviation of hindered diffusion scaling law from free
diffusion (parameter ✏ in (3.7)) for several values of intensity threshold over the range
E/1t > 1. For studies in the literature to date, E < 600.

Simulations of near-wall hindered diffusion revealed the interesting result that the
estimated in-plane diffusion coefficient D̃k, when normalized by the corresponding
value Dk0 in the limit of E = 0, could be accurately represented by the same form
of scaling laws described above for free diffusion, but with a small modification. The
modification involved replacing the �1/3 constant in the free-diffusion scaling laws,
for regions 06 E/1t 6 1 and E/1t > 1, by �(1 + ✏)/3, where the small parameter ✏
depends on the size of the near-wall domain used in the estimation of the diffusion
coefficient and the value of E. For the range of parameters reported in the literature,
we estimate ✏ < 0.03.

Our near-wall simulations also showed that even in the limit of E = 0 there
was a bias in the estimated near-wall diffusion coefficient parallel to the wall, Dk0,
due to asymmetric diffusion next to an impermeable wall. The estimated diffusion
coefficient in this case was found to be a function of interrogation time interval 1t,
where the diffusion coefficient was increasingly overestimated as 1t increased. This
diffusion-induced effect is similar to the mean velocity overestimation of particles in
near-wall measurements, reported analytically by Sadr et al. (2007) and experimentally
by Pouya et al. (2008) and Huang et al. (2009).

The simulation of hindered diffusion presented here could be expanded by
considering other forces that were neglected in this work, such as electrostatic
and van der Waals forces that lead to a non-uniform distribution of particles near a
charged surface. We have performed preliminary studies while including electrostatic
forces and found that the resulting non-uniform particle distribution near the wall
(i.e. the Boltzmann distribution) did not appear to change the scaling laws presented in
this work. In particular, simulations with a 40 nm Debye layer thickness led to plots
very similar to figures 8 and 11, with values ✏ less than approximately 0.05. More
extensive studies are needed to corroborate these preliminary observations. It is noted
that addition of non-stochastic external forces (i.e. electrostatic and van der Waals)
would not be expected to alter the general form of the scaling laws obtained here
for the solution of the Langevin equation, a representation of the Ornstein–Uhlenbeck
process (Da Prato & Zabczyk 1996).
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The closed-form solutions presented here provide the tools needed to assess the
influence of experimental parameters (i.e. E and 1t) in optical particle tracking
on the estimation of the diffusion coefficient. Furthermore, these findings can be
used to remove the artefacts caused by finite detector exposure and extrapolate
the experimental data to the limit of zero exposure. In doing so, one must also
be cognizant of other experimental factors that can additionally compromise the
accuracy of particle displacement measurement. These factors, which include particle
localization errors due to low image signal-to-noise ratio and finite spatial resolution
of the image detector, have been studied previously (Thompson et al. 2002; Montiel
et al. 2006; Berglund 2010; Michalet 2010). In most near-wall experimental studies
to date, larger nano-particles have been used and the range of exposure and time
delays chosen are such that the expected reduction of diffusion coefficient due to
finite exposure is buried within the experimental uncertainties that arise from other
sources. For example, E/1t is typically less than 0.2 for most reported results and the
expected reduction in diffusion coefficient is approximately 7 %, while measurement
uncertainties are often approximately 10 % or higher. Experimental capabilities need
to improve in order to resolve the effects reported here. The experiments with smaller
nano-particles, where higher exposures are used, have mostly focused on velocimetry
so far and do not report the estimated particle diffusion data.
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Appendix A

The approach described here relies on methods of stochastic differential equations
(see Øksendal 1998, §2.2 for details) and we use the nomenclature therein. We
consider Brownian motion Bt(!) for particle ! at time t, where Bt is connected to
the one-dimensional position of the Brownian particle by xt = p

2D1Bt. (A scale
factor of

p
2D1 is needed to recover the prescribed diffusion coefficient D1.) The

initial position of the particle x0 = p
2D1B0 at t = 0 is arbitrarily set at the origin,

i.e. x0 = B0 = 0, without any loss of generality. In Brownian motion the statistics
of particle instantaneous position in time xt follows a normal distribution (Øksendal
1998), in much the same way as the more familiar statistics of particle displacement
1x over time step 1t. The Brownian motion then has the following properties:

(i) Bt(!) ⇠ N(0, t) (hBti = 0, hB2
t i = t, where h i stands for the expectation of the

parameter inside. Note in general hBti = B0, but is set to zero without loss of
generality)

(ii) Bt has independent increments, i.e. for 0 6 t1 6 · · ·6 tk; Bt1, Bt2 � Bt1, . . . , Btk �
Btk�1 are independent.

Then for one-dimensional motion:

hBsBti = hBs(Bs + Bt � Bs)i assuming s < t (A 1a)
= hB2

s i + hBs(Bt � Bs)i (A 1b)
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= hB2
s i + hBsi hBt � Bsi (A 1c)

= s + 0 = s. (A 1d)

The final result above was arrived at after taking advantage of property 1 (hB2
s i = s)

and property 2 (independence of Bs and Bt � Bs). Therefore,

hBsBti = min (s, t) ⌘ s ^ t. (A 2)

The Brownian motion is sampled (in experiment or simulation) at time ticks tk = k1t,
and at each time interval (tk, tk+1) the mean positions are calculated over the intervals
of (tk, tk + E) and (tk+1, tk+1 + E) with integration/exposure 0 6 E 61t:

x̃tk = 1
E

Z tk+E

tk

xt(t)dt. (A 3)

Then we estimate the diffusion coefficient with:

D̃ = h�x̃tk+1 � x̃tk

�2i
21t

= 1
21t

hx̃2
k+1 � 2x̃tk+1 x̃tk + x̃2

tki. (A 4)

By iterated integration and independent increments we know that:

hx̃tk x̃tk+1i = 1
E2

Z tk+E

tk

ds
Z tk+1+E

tk+1

dthxsxti (A 5a)

= 2D1
E2

Z tk+E

tk

ds
Z tk+1+E

tk+1

dthBsBti note: use (A2) (A 5b)

= 2D1
E2

Z tk+E

tk

ds
Z tk+1+E

tk+1

sdt (A 5c)

(note: s 2 (tk, tk + E) < t 2 (tk+1, tk+1 + E))

= 2D1
E2

Z tk+E

tk

sEds = D1
E

�
2tkE + E2�

= 2D1tk + D1E = 2D1

✓
tk � E

2

◆
. (A 5d)

Also:

hx̃2
tki = 1

E2

Z tk+E

tk

ds
Z tk+E

tk

dthxsxti (A 6a)

= 2D1
E2

Z tk+E

tk

ds
Z tk+E

tk

dthBsBti (A 6b)

= 2D1
E2

Z E

0
ds

Z E

0
dthBs+tk Bt+tki (A 6c)

= 2D1
E2

Z E

0
ds

Z E

0
dt (s + tk) ^ (t + tk) (A 6d)

= 2D1
E2

Z E

0
ds

Z E

0
dt (tk + s ^ t) (A 6e)



82 S. Pouya, D. Liu and M. M. Koochesfahani

(note: both s and t vary over (0, E) range. The integral over s can be divided into
two integrals with the first over the range (0, t) where s < t and the second over the
range (t, E) where s > t.)

= 2D1
E2

Z E

0
dt
Z t

0
ds (tk + s ^ t) +

Z E

t
ds (tk + s ^ t)

�
(A 6f )

= 2D1
E2

Z E

0
dt
Z t

0
ds (tk + s) +

Z E

t
ds (tk + t)

�
(A 6g)

= 2D1
E2

⇢Z E

0
dt


tkt + 1
2

t2 + (tk + t) (E � t)
��

(A 6h)

= 2D1

✓
tk + E

3

◆
. (A 6i)

Therefore we conclude that:

D̃ = 2D1
21t

✓
tk+1 + E

3
� 2tk � E + tk + E

3

◆
= D1

✓
1 � E

31t

◆
(A 7a)

H) D̃
D1

= 1 � 1
3

E
1t

. (A 7b)

Equation (A 4) may be evaluated for the case of E > 1t as well. The evaluation of
hx̃2i terms remains unchanged and expressions identical to (A 6i) are obtained. For the
cross-term, however:

hx̃tk x̃tk+1i = 1
E2

Z tk+E

tk

ds
Z tk+1+E

tk+1

dthxsxti (A 8a)

= 2D1
E2

Z tk+E

tk

ds
Z tk+1+E

tk+1

dthBsBti (A 8b)

(note: with E > 1t, the integral over s is divided into segments (tk, tk + 1t) and (tk +
1t, tk + E))

= 2D1
E2

Z tk+1t

tk

ds
Z tk+1+E

tk+1

dthBsBti +
Z tk+E

tk+1t
ds

Z tk+1+E

tk+1

dthBsBti
�

(A 8c)

(note: in the first integral s 2 (tk, tk + 1t) < t 2 (tk+1, tk+1 + E) while in the second
ranges for s and t overlap. So, the inner integral is divided into two integrals going
over segments where s > t and s < t respectively.)

= 2D1
E2

Z tk+1t

tk

ds
Z tk+1t+E

tk+1t
dts +

Z tk+E

tk+1t
ds
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ds(Es) +
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Therefore:
D̃

D1
= 1t

E
� 1

3

✓
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. (A 9)
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D̃

D1
=
✓

E
1t

◆�1
"

1 � 1
3

✓
E
1t

◆�1
#

. (A 10)

REFERENCES

ADAMCZYK, Z., SIWEK, B. & SZYK, L. 1995 Flow-induced surface blocking effects in adsorption
of colloid particles. J. Colloid Interface Sci. 174 (1), 130–141.

BANERJEE, A. & KIHM, K. D. 2005 Experimental verification of near-wall hindered diffusion for
the Brownian motion of nanoparticles using evanescent wave microscopy. Phys. Rev. E 72,
042101.

BELONGIA, B. M. & BAYGENTS, J. C. 1997 Measurements on the diffusion coefficient of colloidal
particles by Taylor–Aris dispersion. J. Colloid Interface Sci. 195, 19–31.

BERGLUND, A. J. 2010 Statistics of camera-based single-particle tracking. Phys. Rev. E 82 (1),
011917.

BEVAN, M. A. & PRIEVE, D. C. 2000 Hindered diffusion of colloidal particles very near to a wall:
revisited. J. Chem. Phys. 113 (3), 1228–1236.

DA PRATO, G. & ZABCZYK, J. 1996 Ergodicity for Infinite Dimensional Systems, vol. 229. Cambridge
University Press.

DESTAINVILLE, N. & SALOMÉ, L. 2006 Quantification and correction of systematic errors due to
detector time-averaging in single-molecule tracking experiments. Biophys. J. 90 (2), L17–L19.

DUNLOP, P. J., HARRIS, K. R. & YOUNG, D. J. 1992 Experimental methods for studying diffusion
in gases, liquids and solids. Phys. Meth. Chem. 6, 175–282.

ERMAK, D. L. & MCCAMMON, J. A. 1978 Brownian dynamics with hydrodynamic interactions.
J. Chem. Phys. 69 (4), 1352–1360.

GELLES, J., SCHNAPP, B. J. & SHEETZ, M. P. 1988 Tracking kinesin-driven movements with
nanometre-scale precision. Nature 331 (6155), 450–453.

GOLDMAN, A. J., COX, R. G. & BRENNER, H. 1967 Slow viscous motion of a sphere parallel to
a plane wall—I motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637–651.

HUANG, P. & BREUER, K. S. 2007 Direct measurement of anisotropic near-wall hindered diffusion
using total internal reflection velocimetry. Phys. Rev. E 76, 046307.

HUANG, P., GUASTO, J. S. & BREUER, K. S. 2009 The effects of hindered mobility and depletion
of particles in near-wall shear flows and the implications for nanovelocimetry. J. Fluid Mech.
637, 241–265.

JIN, S., HUANG, P., PARK, J., YOO, J. Y. & BREUER, K. S. 2004 Near-surface velocimetry using
evanescent wave illumination. Exp. Fluids 37 (6), 825–833.

KAZOE, Y. & YODA, M. 2011 Measurements of the near-wall hindered diffusion of colloidal particles
in the presence of an electric field. Appl. Phys. Lett. 99 (12), 124104.

MICHALET, X. 2010 Mean square displacement analysis of single-particle trajectories with localization
error: Brownian motion in an isotropic medium. Phys. Rev. E 82 (4), 041914.

MICHALET, X. & BERGLUND, A. J. 2012 Optimal diffusion coefficient estimation in single-particle
tracking. Phys. Rev. E 85 (6), 061916.

MONTIEL, D., CANG, H. & YANG, H. 2006 Quantitative characterization of changes in dynamical
behavior for single-particle tracking studies. J. Phys. Chem. B 110 (40), 19763–19770.

OETAMA, R. J. & WALZ, J. Y. 2005 A new approach for analyzing particle motion near an interface
using total internal reflection microscopy. J. Colloid Interface Sci. 284, 323–331.

ØKSENDAL, B. 1998 Stochastic Differential Equations, 5th edn. Springer.



84 S. Pouya, D. Liu and M. M. Koochesfahani

POUYA, S., KOOCHESFAHANI, M. M., GREYTAK, A. B., BAWENDI, M. G. & NOCERA, D. G.
2008 Experimental evidence of diffusion-induced bias in near-wall velocimetry using quantum
dot measurements. Exp. Fluids 44 (6), 1035–1038.

POUYA, S., KOOCHESFAHANI, M., SNEE, P., BAWENDI, M. & NOCERA, D. 2005 Single quantum
dot (QD) imaging of fluid flow near surfaces. Exp. Fluids 39 (4), 784–786.

QIAN, H., SHEETZ, M. P. & ELSON, E. L. 1991 Single particle tracking. Analysis of diffusion and
flow in two-dimensional systems. Biophys. J. 60, 910–921.

RITCHIE, K., SHAN, X. Y., KONDO, J., IWASAWA, K., FUJIWARA, T. & KUSUMI, A. 2005 Detection
of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88

(3), 2266–2277.
SADR, R., HOHENEGGER, C., LI, H., MUCHA, P. J. & YODA, M. 2007 Diffusion-induced bias in

near-wall velocimetry. J. Fluid Mech. 577, 443–456.
SADR, R., LI, H. & YODA, M. 2005 Impact of hindered Brownian diffusion on the accuracy of

particle-image velocimetry using evanescent-wave illumination. Exp. Fluids 38 (1), 90–98.
SADR, R., YODA, M., ZHENG, Z. & CONLISK, A. T. 2004 An experimental study of electro-osmotic

flow in rectangular microchannels. J. Fluid Mech. 506, 357–367.
SAVIN, T. & DOYLE, P. S. 2005 Static and dynamic errors in particle tracking microrheology. Biophys.

J. 88 (1), 623–638.
SHOLL, D. S., FENWICK, M. K., ATMAN, E. & PRIEVE, D. C. 2000 Brownian dynamics simulation

of the motion of a rigid sphere in a viscous fluid very near a wall. J. Chem. Phys. 133 (20),
9268–9278.

THOMPSON, R. E., LARSON, D. R. & WEBB, W. W. 2002 Precise nanometer localization analysis
for individual fluorescent probes. Biophys. J. 82 (5), 2775–2783.

UNNI, H. N. & YANG, C. 2005 Brownian dynamics simulation and experimental study of colloidal
particle deposition in a microchannel flow. J. Colloid Interface Sci. 291 (1), 28–36.

ZETTNER, C. & YODA, M. 2003 Particle velocity field measurements in a near-wall flow using
evanescent wave illumination. Exp. Fluids 34 (1), 115–121.


