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Optimal transition paths of stochastic chemical kinetic systems
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We present a new framework for finding the optimal transition paths of metastable stochastic
chemical kinetic systems with large system sizes. The optimal transition paths are identified, in
terms of reaction advancement coordinates, to be the most probable paths according to large
deviation theory for the limiting dynamics governed by stochastic differential equations. Dynamical
equations for the optimal transition paths are obtained using the variational principle. A multiscale
minimum action method is proposed as a numerical scheme to solve the optimal transition paths.
Applications to the toggle switch model are presented. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2191487�
I. INTRODUCTION

This paper addresses the important issues on transition
paths and transition rates of complex stochastic chemical ki-
netic systems exhibiting metastability. Metastable biochemi-
cal systems influenced by stochastic effects are common and
abundant.1–3 In a deterministic model, the system possesses
different stable states and the dynamical trajectory converges
to one of the steady states depending upon the initial condi-
tion. Incorporating stochastic effects into chemical kinetic
systems induces random convergence to deterministically
stable states and dynamic switching between different meta-
stable states. Assuming ergodicity, the switching between
different metastable states is guaranteed on the infinite time
horizon. The time scales between the switchings are usually
much longer than the time scales for the relaxation to the
deterministic stationary states. In this case, transitions be-
tween different metastable states are called rare events.4

Classical examples include the lytic and lysogenic develop-
ments of bacteriophage lambda virus infection in E. coli5 and
the lactose utilization of E. coli.6

Some recent efforts have been made on the transition
paths and transition rates of metastable chemical kinetic sys-
tems 7–10 using large deviation theory,11 which gives
asymptotic probabilities for rare events. The main idea is that
when the system size is very large, the limiting dynamics of
the stochastic system can be described by a stochastic differ-
ential equation. 12,13 Therefore, the Freidlin-Wentzell theory
for diffusion processes14 can be applied to find the most
probable transition paths. Even though this has been the
common theme in much of the recent works on this subject,
the key issues of the identification of the optimal transition
paths under the most general circumstances and correspond-
ing efficient numerical schemes have not been fully under-
stood. As a result, the validity and applicability of this strat-
egy have not been satisfactorily demonstrated.

This paper has two purposes. The first is to identify the
optimal transition paths as minimizers of the Freidlin-
Wentzell action functional after reformulating the system in
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terms of reaction advancement coordinates. The dynamical
equation satisfied by the optimal transition paths is derived
using the variational principle. Compared with previous
works,8,9 the approach proposed here requires less assump-
tions. It does not need the noise driving the systems to be
nondegenerate, or an energy landscape describing the sys-
tem. The second purpose of this paper is to suggest a multi-
scale minimum action method for numerical solutions of the
optimal transition paths. The method minimizes the Freidlin-
Wentzell functional augmented by a boundary penalty along
the steepest descent direction in the space of all paths. A
multiscale structure is introduced to handle the inner and
boundary terms of the transition paths in a hierarchical fash-
ion, thereby achieves efficiency while keeping the simplicity
of implementation.

As mentioned above, some recent efforts have been
made on the optimal transition paths and transition rates of
metastable chemical kinetic systems. In Refs. 7 and 10, a
WKB method is introduced to solve the master equation of
stochastic chemical kinetic systems assuming the large sys-
tem size. The optimal transition paths were defined on heu-
ristic arguments. In Refs. 8 and 9, large deviation theory is
adopted to study the limiting stochastic differential equa-
tions, with applications to the bacteriophage lambda infec-
tion of E. coli. But the results in Refs. 8 and 9 still have their
limitations. The method proposed in Ref. 8 needs the noise
driving the system to be nondegenerate, which is only true
when the number of reactions is larger than the number of
the reacting species. The approach in Ref. 9 requires an en-
ergy landscape describing the dynamics, which is not always
available for chemical kinetic systems.

In the following, after introducing some backgrounds for
stochastic chemical kinetic systems, we will discuss the iden-
tification of the optimal transition paths and provide its dy-
namical equations. Afterwards, we will introduce the mini-
mum action method and discuss its multiscale
implementation. Then we will illustrate the method through

the toggle switch model proposed in Ref. 15.
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II. OPTIMAL TRANSITION PATHS FOR STOCHASTIC
CHEMICAL KINETIC SYSTEMS

The stochastic chemical kinetic system16–18 is the most
successful and promising model for mesoscale systems such
as genetic regulatory networks, in which reacting species are
usually in low concentrations, therefore molecular fluctua-
tions must be incorporated for an accurate account of dy-
namical features of the reacting system.19 It describes the
time evolution of an isothermal, spatially homogeneous mix-
ture of chemically reacting molecules contained in a fixed
volume V. We take NS species of molecules Si=1,. . .,NS

in-
volved with MR reactions Rj=1,. . .,MR

, with xi being the num-
ber of molecules of species Si. The state of the system is
given by

x = �x1, . . . ,xNS
� � NNS. �1�

Each reaction Rj is characterized by a rate function aj�x� and
a state change vector � j. We write

Rj = �aj,� j� . �2�

Given state x, the occurrences of the reactions on an infini-
tesimal time interval dt are independent of each other and the
probability of reaction Rj during this time interval is given
by aj�x�dt. The state of the system after reaction Rj is x+� j.
The time evolution of the probability distribution of the sys-
tem P�x , t� is described by the forward Kolmogorov master
equation:

�P�x,t�
�t

= �
j

�aj�x − � j�P�x − � j,t� − aj�x�P�x,t�� . �3�

It is well known that when the concentrations of all reacting
species in a chemical kinetic system increase to infinity �so
does the overall size � of the system�, the forward master
equation �3� describing chemical kinetic systems in discrete
variables converges to a Fokker-Planck equation describing a
diffusion process in a continuous state space.12 Observing
that the rate functions �aj�x��’s grow linearly with the system
size �, we first rescale the state space and the reaction rates
such that

y =
x

�
, b�y� =

a�x�
�

. �4�

It is proved in Ref.13 that realizations of the discrete kinetic
system �3� converge to the following diffusion process on
finite time intervals with an error of order O�ln � /��:

ẏt = �
j=1

� jbj�yt� +
1

��
�
j=1

� jbj
1/2�yt�ẇt

j , �5�

where �wt
j�’s are independent Brownian motions.20 The same

equation as above was derived intuitively with a more physi-
cal interpretation in Ref. 21 and was verified in Ref. 22 nu-
merically through a simple dimerizing reaction. This conver-
gence can be interpreted as the thermodynamic limit of the
molecular systems when the system size � approaches infin-
ity in such a way that the relative species concentration x /�
remains constant. Equation �5� also justifies the well known

rule of thumb in chemical kinetics that relative fluctuations
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in chemical systems typically scale as the inverse square root
of the system size.

Driven by small noises of magnitude 1/�� in the limit-
ing dynamics �5�, the process spends most of the time near
the stable states of the deterministic system with rare
switches between different metastable states. This means that
the metastability of chemical kinetic systems with large sys-
tem sizes fits into the framework of large deviation theory,
which studies the “small perturbation, large deviation” phe-
nomena, giving asymptotic estimates for the small probabili-
ties of rare events.11 Assuming the noise driving the system
to be additive and nondegenerate, the large deviation theory
for the sample paths of diffusion processes14 has been re-
cently combined with optimization techniques23 to find the
most probable transition paths, with applications to the study
of nucleation events in the Ginzberg-Landau model24 driven
by thermal fluctuations. We will adopt a similar strategy here
to find the optimal transition paths for the large system size
limit of chemical kinetics �5�. Modifications are needed to
deal with the extra difficulty that the noise in �5� is multipli-
cative and not necessarily to be nondegenerate.

First we need some simplifications of dynamics �5� to
overcome the degeneracy of the noise. Notice that the vari-
able y in �5� only updates along the directions of the state
change vectors �� j�’s. We can define a new auxiliary variable
z such that

yt = y0 + �
j

zt
j� j . �6�

The auxiliary variable z introduced here is usually called the
reaction advancement coordinate.18 Notice that z�RMR.
Equations for z have the following form:

żt
j = cj�zt� +

1
��

cj
1/2�zt�ẇs

j, j = 1, . . . ,MR, �7�

where

cj�z� = bj�y� . �8�

We then define the following Freidlin-Wentzell action func-
tional

IT��� =
1

2
	

0

T

�
j

cj
−1��t���̇t

j − cj��t��2dt , �9�

for each �t� ��0=0 ,�t�C��0,T� :RMR��. We set IT���=�
when the above integral is divergent. Notice that when cj

=0, the reaction Rj is essentially frozen. So we also set cj
−1

=0 when cj =0, which means the stationary state does not
contribute in the action functional. The main result of the
Freidlin-Wentzell theory11,14 is that for sufficiently large �, a
probability can be assigned for each path � such that

P�
z − �
 � �� � exp�− �IT���� , �10�

where � is a sufficiently small number. The transformations
�6� and �7� change the dynamics into a stochastic differential
equation with a diagonal diffusion matrix that is more likely
to be nondegenerate, which makes the large deviation theory
for diffusion processes more applicable. Without this trans-

formation, to define the Freidlin-Wentzell action functional
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�9� for the original diffusion process �5� as in Ref. 8, we
would have to assume the diffusion matrix a=��� with �
= �bj

1/2� j� to be nongenerate, which is only true when the
number of reactions is larger than the number of reacting
species.

The probabilistic estimate �10� suggests that we can find
the most probable path by minimizing the rate functional
IT��� over all possible transition pathways. Suppose that we
have two metastable states A and B. The optimal transition
path between A and B should minimize the Freidlin-Wentzell
functional such that

IT��� = min
�

IT��� . �11�

The variational principle implies that � should satisfy the
following equation:

�̈ t
k = �̇ t

k�
j

�̇ t
j� j ln ck��t� +

1

2
ck��t��

j

��̇ t
j�2�kcj

−1��t�

+
1

2
ck��t��

j

�kcj��t�, k = 1, . . . ,MR, �12�

with the boundary condition

� · �0 = 0, � · �T = B − A , �13�

where �= ��1 , . . . ,�MR�. The derivation of the above equation
is provided in the Appendix. Following Ref. 24, we call the
optimal transition path satisfying Eqs. �12� and �13� the
“minimum action path.” The undetermined boundary condi-
tion �13� is from the fact that at metastable states, the reac-
tions are in equilibrium but not shut off. The reacting species
are still being synthesized and degraded, though the pro-
cesses are in balance with each other. It can also be seen
from the definition that the equilibrium states do not contrib-
ute to the action functional �9� since the processes in balance
satisfy the deterministic equation without random perturba-
tion,

żt
j = cj�z� . �14�

Notice that �12� and �13� may possess multiple solutions.
Provided that �T is a global minimizer of IT satisfying �12�
and �13�, the mean exit time for the process to switch from
metastate A to metastate B can be given11,14 as the following:

	 � exp�� inf
T

IT��T�� . �15�

III. THE MULTISCALE MINIMUM ACTION
METHOD

Now we want to introduce a numerical scheme solving
Eqs. �12� and �13� satisfied by the optimal transition paths.
The standard scheme using optimization techniques to solve
Eq. �12� with fixed boundary values is the so-called “mini-
mum action method.”24 The method proceeds by evolving
curves in the space of all transition paths with a dynamics
that relaxes to the most probable transition path. Here we
will propose a modified version of the minimum action
method which will include penalty terms in the curve dy-

namics to handle the undetermined boundary condition �13�.
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A multiscale structure of the scheme to deal with the stiffness
generated by the boundary penalty terms will also be intro-
duced.

First, we want to give a brief review of the minimum
action method. Suppose we want to find a minimizer � for
the action functional IT��� with fixed boundary conditions at
A0 and A1, i.e.,

�IT��� = min� IT��� ,

subject to �0 = A0, �T = A1.

 �16�

Denote by ��
 ,s� the evolving curve with fixed boundary at
A0 when 
=0 and at A1 when 
=T. After an appropriate
time discretization for 
, the minimum action method
evolves the following equation:

��

�s
= −

�IT���
��

. �17�

Direct time discretizations for s in the above equation with
Euler method will amount to the steepest descent method for
the minimization of IT���. More sophisticated optimization
techniques are available to gain extra efficiency.23,24

To deal with the undetermined boundary condition �13�,
we propose a modified version of minimum action method.
Notice that �13� can be seen as a constraint imposed on the
boundary of the transition paths. This suggests standard tech-
niques of constraint optimization. We first introduce a new
action functional with boundary penalty terms:

IT��,�� = IT��� +
1

2�
��� · �0�2 + �� · �T − �B − A��2� , �18�

where ��0 is the penalty parameter. By driving � to zero,
we penalize constraint violations at the boundary with in-
creasing severity. In practice, we choose a sequence of val-
ues ��k� with �k↓0 as k→� and seek approximate minimiz-
ers for IT�� ,�k�. As �k→0, the solutions should converge to
the minimizer of the action functional with the undetermined
boundary condition �13�:

�IT��� = min� IT��� ,

subject to � · �0 = 0, � · �T = B − A .

 �19�

The procedure of the algorithm can be described as the fol-
lowing:

�S1� Initiate k=0, choose �0�0, 
0�0, and starting
curve �0;

�S2� Solve with starting curve �k the following gradient
dynamics for each k:

��

�s
= −

�IT��,�k�
��

, �20�

to reach an approximate solution � k such that the absolute
value of the right hand side of �20� is smaller than a thresh-
old 
k; and

�S3� Reset starting curve �s
k+1=� k and choose

�k+1 � �k, 
k+1 � 
k. �21�

Repeat �S2�.
We call this scheme the “minimum action method with
boundary penalty.”
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Now we want to discuss efficient numerical schemes for
solving �20�. We first discuss the time discretization of �20�.
Then we will introduce a multiscale scheme to deal with the
stiffness generated by the smallness of �. We discretize the
time domain �0,T� with a mesh of size �
=1/L and define
the grid point 
� to be


� = ��
, � = 0,1, . . . ,L . �22�

The numerical approximation to ��
�� is denoted by ��. We
use the midpoint rule to discretize the time integral in the
action functional IT���, which will give us

IT��� = �
j

�
�=0

L−1

cj
−1���+1 + ��

2
�

����+1
j − ��

j

�

− cj���+1 + ��

2
��2

. �23�

Written in discretized variables, dynamics �20� has the fol-
lowing form for the inner points of the transition path:

���

�s
= −

�IT���
���

, � = 1, . . . ,L − 1. �24�

coupled with the equation for the boundary points

��0

�s
= −

�IT���
��0

−
1

�
����0,

��L

�s
= −

�IT���
��L

−
1

�
�����L − �B − A�� . �25�

Equations �24� and �25� have a multiscale nature due to
the stiffness generated by �, which represents the time scale
separation of the system. Equation �24� describes the time
evolution of the slow dynamics for the slow variables
��=1,. . .,L−1, while Eq. �25� describes the time evolution of the
fast dynamics for the fast variables ��0 ,�L�. Direct simula-
tion of �24� and �25� will entail very small time steps pre-
scribed by � and most of the computing time will be spent
on the simulation of the fast dynamics. Meanwhile, what is
more of interest is the slow variables ��=1,. . .,L−1, which give
the optimal transition paths. Here we propose a multiscale
scheme consisting of two solvers organized with one nested
in the other: An outer solver for the slow variables only, with
the coefficients of the slow dynamics being computed in an
inner solver for the fast dynamics only. At each iteration of
step �S2� of the minimum action method with boundary pen-
alty, the nested scheme does the following to solve �20�:

�M1� Inner solver. Solve fast dynamics �25�, with the
slow variables ��=1,. . .,L−1 fixed as parameters, until an ap-
proximate stationary solution ��0 ,�L� is reached such that
the absolute value of the right hand side of �25� is smaller
than 
k, where 
k is the same threshold in �S2�.

�M2� Outer solver. Solve slow dynamics �24� for one
time step, with the right hand side of �24� evaluated using the
quasistationary solution ��0 ,�L� obtained from the inner
solver. Repeat �M1�.

As before, we could use the steepest descent method or
other optimization algorithms as the inner and outer solvers.

The rationale behind the above scheme is that fast dynamics
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�25� is still a gradient flow driven by a potential in which the
slow variables are fixed parameters. The fast variables
should reach a quasiequilibrium on a time scale of O�1/��,
which is much faster than the O�1� time scale on which the
slow variables advance. The same idea has been applied to
the stochastic simulation of chemical kinetic systems with
multiple time scales �see Refs. 25 and 26 and the reference
therein�. As shown in Refs. 25 and 26, if we choose appro-
priate numerical parameters, the above scheme can achieve
an increasing accuracy for smaller � with a computational
cost independent of �. We call the overall scheme given as
�S1�–�S3� and �M1� and �M2� the “multiscale minimum ac-
tion method.”

IV. NUMERICAL EXAMPLE: THE TOGGLE SWITCH
MODEL

We consider the following example of toggle switch
model,15 which artificially realizes that a switch consists of
two genes repressing each other’s expression, placed in a
high copy plasmid in E. coli. Once expressed, each protein
can bind particular DNA sites upstream of the gene which
codes for the other protein, thereby represses its expression.
The deterministic equation describing the system has the fol-
lowing form:

u̇ =

1

1 + v� − u ,

�26�

v̇ =

2

1 + u� − v ,

where u is the concentration of repressor 1, v is the concen-
tration of repressor 2, and 
i=1,2 are the effective rates of
synthesis of repressor 1 and repressor 2, respectively. There
are four reactions in the system, namely, the synthesis and
degradations of the repressor u and repressor v. The chemi-
cal Langevin equation, consistent with �5�, has the following
form:

u̇ =

1

1 + v� +� 
1

��1 + v��
ẇt

1 − u −� u

�
ẇt

2,

�27�

v̇ =

2

1 + u� +� 
2

��1 + u��
ẇt

3 − v −� v
�

ẇt
4,

where wt
i �i=1,2 ,3 ,4� are independent standard Brownian

motions. The transition paths of slightly different versions of
the same system have been studied in Refs. 8–10. The reac-
tion advancement coordinate z defined as in �6� can be given
according to the state change vectors:

�u

v
� = �u0

v0
� + z1�1

0
� + z2�− 1

0
� + z3�0

1
� + z4� 0

− 1
� .

�28�
The reaction rates in terms of z are
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c1�z� =

1

1 + �v0 + z3 − z4�� ,

c2�z� = u0 + z1 − z2,

�29�

c3�z� =

2

1 + �u0 + z1 − z2�� ,

c4�z� = u0 + z3 − z4.

We choose the parameters in the toggle switch model
�27� to be the same as in Ref. 10 such that


1 = 156, 
2 = 30, � = 3, � = 1. �30�

The metastable states in the system are

A = �0.005 88,29.825�, B = �154.897,0.192� . �31�

The evolving path is discretized with L=40 nodes equally
distributed as in �22�. We choose the parameters in the mul-
tiscale minimum action method to be

�k = 
k = 2−k, k = 0,1, . . . . �32�

The steepest descent method is chosen as both inner and
outer solvers. In Figs. 1 and 2, we show the optimal transi-
tion paths for different time horizons T=10 and T=20, re-
spectively. The results qualitatively agree with those in Ref.
10. Figure 3 gives the value of the Freidlin-Wentzell action
functional �9� for the optimal transition paths on different
time horizons.

It can be seen from Figs. 1 and 2 that there is no signifi-
cant change in the coordinates that the optimal paths for
different time horizons visit. But for the longer time horizon
of T=20, the optimal path spends more time around the criti-
cal point in the middle of the path. This makes the minimum
action method very undesirable for longer time scales be-
cause more nodes are needed to capture the nucleation events

FIG. 1. Optimal transition path for the toggle switch model from metastable
state A to metastable state B when T=10.
near the end points of the path, which will increase the com-
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putational load. On the other hand, to estimate the mean
transition rates using �15� involves the minimizers of the
action functional on the infinite time horizon. Approximating
�15� with the minimizers for T=80 will give a transition rate
much smaller than the experimentally observed rate. This
could be partially due to the inadequacy of the model10 or
due to the limitation of the minimum action method on infi-
nite time horizon.

On the theoretical side, an important issue is the conver-
gence and accuracy of the multiscale minimum action
method in terms of the system size � and parameters of the
numerical discretization. Without making use of the auxiliary
diffusion process �5�, Shwartz and Weiss provided the action
functional for the rescaled variable y defined as in �4� in
continuous state space in a different form.27 But the action

FIG. 2. Optimal transition path for the toggle switch model from metastable
state A to metastable state B when T=20.

FIG. 3. Freidlin-Wentzell action functionals for the optimal paths on differ-

ent time horizons.
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functional proposed in Ref. 27 does not have the seemingly
numerical tractability that the Freidlin-Wentzell functional
possesses. A future thorough mathematical analysis for the
relation between the two action functionals and the error in-
duced by adopting the Freidlin-Wentzell functional is needed
for the rigorous justification of the multiscale minimum ac-
tion method.

V. CONCLUSION

We propose a new framework for the optimal transition
paths of stochastic chemical kinetic systems by minimizing
the Freidlin-Wentzell functional in reaction advancement co-
ordinates using the multiscale minimum action method. Fu-
ture investigations may involve �1� identification and nu-
merical methods for optimal transition paths on the infinite
time horizon, �2� convergence analysis for the multiscale
minimum action method, and �3� applications to more com-
plex systems.

ACKNOWLEDGMENTS

We are grateful to Weinan E and Eric Vanden-Eijnden
for stimulating discussions and insightful comments. We
want to thank Princeton Institute for Computational Science
and Engineering �PICSciE� for providing their computing
resources.

APPENDIX: MINIMIZERS OF THE ACTION
FUNCTIONAL

Denote by � a minimizer of the action functional IT as
defined in �9�. By definition, we have

IT��� =
1

2
	

0

T

�
j

���̇ t
j�2cj

−1��t� − 2�̇ t
j + cj��t��dt . �A1�

Suppose � is a smooth function with �0=�T=0. Differenti-
ating IT��+��� with respect to � and taking the first order
derivative to be zero, we have

1

2
	

0

T

�
j
�2�̇ t

j�̇ t
jcj

−1��t� − � �̇ t
j

cj��t�
�2

�
�

��cj��t��t
�

− 2�̇ t
j + �

�

��cj��t��t
��dt = 0. �A2�

Integrating by parts, the arbitrariness of � gives

− 2�̈ �
kck

−1��t� + 2�̇ t
k 1

ck
2��t�

�
�

��ck��t��̇t
�

− �
j
� �̇ t

j

cj
2��t�

�2

�kcj��t� + �
j

�kcj��t� = 0, �A3�

or equivalently
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�̈ t
k =

�̇ t
k

ck��t�
�

�

��ck��t��̇t
�

−
1

2
ck��t��

j
� �̇ �

j

cj
2��t�

�2

�kcj��t�

+
1

2
ck��t��

j

�kcj��t� , �A4�

which gives �12�.
By the definition of the reaction advancement coordinate

z, setting y0=A in �6�, we have at equilibrium states A and B

A = A + � · z, B = A + � · z , �A5�

which is equivalent to the boundary condition �13�:

� · z = 0, � · z = B − A . �A6�
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