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The preceding Comment1 on our recent paper2 is con-
cerned with efficient stochastic simulation algorithms for
chemical kinetic systems with disparate rates. Let us first
introduce the setup. Consider a chemical kinetic system
whose reactions can be divided into two groups, one contain-
ing the slow reactions specified by

�aj
s�x�,� j

s�, j = 1, . . . ,NR
s , �1�

where x= �x1 , . . . ,xNs
� and xk is the number of molecules of

the kth species, aj
s�x� is the rate of the jth slow reaction, and

� j
s is the stoichiometric vector of this reaction �i.e., right after

reaction j, the state of the system is x+� j
s if it was x before

the reaction�, and the other group containing the fast reac-
tions specified by

��−1aj
f�x�,� j

f�, j = 1, . . . ,NR
f , �2�

where ��1 is a small parameter measuring the separation of
time scale between slow and fast reactions. Then, according
to results proven in the mathematics literature, the evolution
of this system can be approximated by that of a limiting
system containing only slow reactions given by

�āj
s�x�=�

x�

�x
f�x��aj

s�x��,� j
s�, j = 1, . . . ,NR

s . �3�

Here �x
f�x�� is the equilibrium probability distribution of the

“virtual fast process,” i.e., the probability of finding the sys-
tem in state x� after a long time if it is initiated at the state x
and if only the fast reactions are allowed to occur and the
slow ones are artificially turned off. This limit theorem was
proven first in Ref. 8 in a slightly different setting, then fur-
ther extended, e.g., in Refs. 9–11. Reference 12 presents the
version in the context of Markov chains with slow and fast
rates which include the case of stiff chemical systems dis-
cussed here. In Ref. 12, the notion of virtual fast process was
used implicitly without using this terminology—that termi-
nology only came later in Ref. 3. Some of these references
were given in Ref. 2 and a more thorough discussion with
references was given in Ref. 5. The authors of Refs. 1, 3, and
4 were apparently unaware of these results and proceeded to

rederive these statements in Ref. 3 and again in the Comment
under discussion. Since Ref. 12 may not be readily acces-
sible to the reader, as evidenced by the Comment under dis-
cussion of Ref. 1, for his/her convenience we summarize the
arguments in the Addendum at the end of this Response.

In rare situations such as the simple example discussed
in Refs. 1 and 2, the effective slow rates ās�x� in Eq. �3� can
be obtained in closed form formulas. In this case, one can
simply use Gillespie’s original stochastic simulation
algorithm6,7 �SSA� to simulate the limiting system instead of
the original one, and neither slow scale SSA �ssSSA� nor
nested SSA �nSSA� is needed. In general, however, approxi-
mations have to be made because the calculation of the rates
ās�x� is very difficult since it requires knowing explicitly the
equilibrium probability distribution �x

f�x����y
f �x�� of the

virtual fast process and computing the sum in Eq. �3�. While
both ssSSA and nSSA rely on the existence of the limiting
system, the two methods are very different in the way they
use this result. ssSSA tries to approximate the effective slow
rates ās�x� in Eq. �3� analytically beforehand by introducing
closure approximations: assumption of statistical indepen-
dence of the various species at the level of the virtual fast
process, replacement of expectations of products by products
of expectations, etc. These approximations may be adequate
in specific situations, but in general they are uncontrolled,
and their validity is very difficult to establish and often
doubtful. The results of such simulations may still be useful
in some cases, but one has to understand these caveats, par-
ticularly in light of the fact that one main objective of mul-
tiscale modeling is to eliminate such ad hoc, uncontrolled
modeling approximations.

nSSA proceeds differently. Instead of trying to approxi-
mate the effective rates ās�x� in Eq. �3� analytically, it com-
putes them numerically on the fly when needed. Suppose that
the current state of the system is x and denoted by xf�t�, a
trajectory of the virtual fast process with xf�t=0�=x, this
trajectory can be easily generated by a SSA using only the
fast reactions specified by Eq. �2�. Then
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ās�x� = lim
T→�

1

T
	

0

T

as�xf�t��dt �4�

follows from ergodicity, which guarantees that the ensemble
average in Eq. �3� can be replaced by a time average.

Why is Eq. �4� useful? First, note that the evaluation of
Eq. �4� has become completely seamless, as it only requires
knowing the fast rates, not the slow variables nor their equi-
librium distribution �x

f�x��. Secondly, an accurate approxi-
mation of this limit can be obtained by taking T as a large
multiple of �. This is because the virtual fast process
evolves, and equilibrates, on the fast time scale. In fact, in
Ref. 5 precise estimates were given for the error made by
approximating the limit in Eq. �4� using finite T=O���. They
demonstrate that nSSA is more efficient, by a factor of the
order of �−1�1, than the direct SSA for the original stiff
system. nSSA is in general more costly than ssSSA. But
unlike ssSSA, nSSA does not make any closure approxima-
tions and hence remains accurate for all stiff chemical sys-
tems with disparate rates. This is also typical in multiscale
modeling. First-principles-based techniques are often more
costly but they are also more accurate. In practice, one has to
weigh accuracy versus cost in order to select the most appro-
priate strategy.

We also note that the strategy behind nSSA has been
used before for stochastic differential equations with sepa-
rated time scales, as was proposed first in Ref. 15, and it fits
the general framework of the heterogeneous multiscale
method.16

In Ref. 2, we asserted that ssSSA does not make any
improvement over the classical SSA if there are no slow
species in the system. This statement is incorrect, as was
pointed out in the Comment under discussion.1 In retrospect,
the origin of this mistake is to some extent related to the
notion of slow and fast species used in Ref. 3, which has
been incorrectly advocated as the relevant slow and fast vari-
ables. This seems to have been inherited from earlier works
on this subject,13,14 and most subsequent works on this sub-
ject seem to have followed this practice.17,18 This misconcep-
tion is clearly exhibited in the last part of the Comment
under discussion. The correct notion of slow variables in this
context was explained in Ref. 2, and they are the variables
which are invariant in the virtual fast process. As noted in
Ref. 2, the distribution �x

f�x�� depends only on some special
linear combination yk=� j=1

Ns bj
kxj for some appropriate weights

�b1
k , . . . ,bNs

k �, k=1, . . . ,K, not the full vector x
= �x1 ,x2 , . . . ,xNs

�. The y’s are the slow variables, and thus
�x

f�x����y
f �x��. While the explicit knowledge of these vari-

ables is not essential in the implementation of the algorithms
discussed here, it matters for the error analysis of these al-
gorithms to understand the precise statement of the limit
theorem, as was shown in Refs. 2 and 5.

Addendum: Khasminskii’s limit theorem. Here we sum-
marize the argument given in Ref. 12 following the ideas by
the same author in Ref. 8.

Let p�x , t� be the instantaneous probability distribution
function in the chemical kinetics system, i.e., p�x , t� gives the
probability that there be x= �x1 , . . . ,xNs

� molecules of each
species at time t. p�x , t� satisfies the following master equa-

tion �referred to as the forward Kolomogorov equation�:

ṗ�x,t� = �
j=1

NR
s

�aj
s�x − � j

s�p�x − � j
s,t� − aj

s�x�p�x,t��

+
1

�
�
j=1

NR
f

�aj
f�x − � j

f�p�x − � j
f,t� − aj

f�x�p�x,t�� . �5�

Using the same shorthand notation as in Ref. 12, this equa-
tion can be written as

ṗ�t� = �−1p�t�A + p�t�B , �6�

where p�t�A stands for �x�p�x� , t�A�x� ,x�, A�x ,x��
=aj

f�x��x�=x+�j
f, and similarly for p�t�B and B. In the spirit of

singular perturbation theory, look for a solution of this equa-
tion in the form of

p�t� = p
0��t� + �p
1��t� + O��2� . �7�

Insert this expansion into Eq. �6� and equate equal powers in
� to get the following hierarchy of equations:

O��−1�, p
0��t�A = 0,

O��0�, p
1��t�A = ṗ
0��t� − p
0��t�B , �8�

¯ .

The first equation �which is Eq. �12� in Ref. 12� says that, to
leading order in �, the system is always at adiabatic equilib-
rium with respect to the fast reactions in the system. In full,
this equation can be written as

0 = �
j=1

NR
f

�aj
f�x − � j

f�p
0��x − � j
f,t� − aj

f�x�p
0��x,t�� , �9�

which is precisely the equation for the equilibrium distribu-
tion of the virtual fast process used in the slow scale lemma
in Ref. 13. The solutions to this equation are not unique—
they are parametrized by the slow variables for the system.
Assuming that the fast reactions leave invariant certain linear
combinations of the species, yk=� j=1

N bj
kxj, k=1, . . . ,M, where

the bk’s are such that � j=1
N bj

k� j
f =0, Eq. �9� has many solutions

indexed by the slow variables y: these are the equilibrium
distributions of the fast virtual process. If we denote by �y�x�
these distributions, then Eq. �9� says that

p
0��x,t� = �
y

q�y,t��y�x� , �10�

where q�y , t� is the instantaneous probability distribution of
the slow variables. Equation �9� does not specify the evolu-
tion of q�y , t�; an equation for the latter is provided by the
solvability condition for the second equation in Eq. �8�,
which is obtained by multiplying this equation by
1y�x� �1y�x�=1 if yk=� j=1

N bj
kxj and 1y�x�=0 otherwise�, sum-

ming over x and noting that
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�
x

1y�x�p
1��t�A = �
j=1

NR
f

�
x

1y�x��aj
f�x − � j

f�p
1��x − � j
f,t�

− aj
f�x�p
1��x,t�� = 0 �11�

by reorganizing the first sum over x and using the fact that
1y�x�=1y�x−� j

f� by the definition of y. Thus, this operation
leaves us with the following equation for q�y , t�:

q̇�t� = q�t�B̄ , �12�

where B̄ is

B̄�y,y�� = �
x,x�

1y��x���y�x�aj
s�x��x�=x+�j

s. �13�

Equation �12� together with Eq. �10� summarizes �using dif-
ferent notations for the sake of clarity� the content of Propo-
sition 3.2 in Ref. 12. It is now a simple matter to show that
the system with the effective reactions in Eq. �3� satisfies
�x1y�x�p̄�x , t�=q�y , t�, where q�y , t� is the solution of Eq.
�12�.
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