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Nested stochastic simulation algorithm for chemical kinetic systems
with disparate rates

Weinan Ea�

Department of Mathematics and Program in Applied and Computational Mathematics (PACM), Princeton
University, Princeton, New Jersey 08544

Di Liub� and Eric Vanden-Eijndenc�

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

�Received 2 May 2005; accepted 12 September 2005; published online 14 November 2005�

An efficient simulation algorithm for chemical kinetic systems with disparate rates is proposed. This
new algorithm is quite general, and it amounts to a simple and seamless modification of the classical
stochastic simulation algorithm �SSA�, also known as the Gillespie �J. Comput. Phys. 22, 403
�1976�; J. Phys. Chem. 81, 2340 �1977�� algorithm. The basic idea is to use an outer SSA to
simulate the slow processes with rates computed from an inner SSA which simulates the fast
reactions. Averaging theorems for Markov processes can be used to identify the fast and slow
variables in the system as well as the effective dynamics over the slow time scale, even though the
algorithm itself does not rely on such information. This nested SSA can be easily generalized to
systems with more than two separated time scales. Convergence and efficiency of the algorithm are
discussed using the established error estimates and illustrated through examples. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2109987�
I. INTRODUCTION

This paper addresses two important issues on stochastic
models of chemical kinetic systems with disparate rates,
namely, effective models over the slow time scale and effi-
cient simulation algorithms. These issues have received a
great deal of attention in recent years, and much progress has
been made.1–5 One main idea, pursued by many authors,2,4,5

is to make a quasiequilibrium approximation for the fast pro-
cesses and solve the empirically averaged slow processes.
Even though this has been a common theme in much of the
recent works on this subject, it seems that the key issue of
identifying the effective process and effective variables over
different time scales has not been fully understood. As a
result, the validity and generality of these approaches have
not been satisfactorily demonstrated.

The present paper has two purposes. The first is to pro-
vide effective models and effective variables for stochastic
chemical kinetic systems with disparate rates. Compared
with previous works, such as Refs. 4 and 5 which rely on the
identification of slow and fast species, our work gives a gen-
eral prescription for identifying effective slow variables. As
we will see later, in general the slow variables are not asso-
ciated with specific species, but are rather combinations of
the molecular numbers of several species.

The second purpose of this paper is to suggest an effi-
cient stochastic simulation algorithm for systems with dis-
parate rates in the style of the well-known Gillespie
algorithm.6,7 What should be noted is the simplicity of this
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algorithm, it is completely seamless. Even though under-
standing the effective dynamics on the slow time scale re-
quires knowing the slow variables, the algorithm itself does
not use this information. It only requires knowing the slow
and fast reactions. We also discuss the convergence and ef-
ficiency of the algorithm based on the error estimates that we
have established.

As mentioned above, some recent efforts have been
made for the simulation of chemical kinetic systems with
disparate rates. In Ref. 1 a multiscale simulation method was
proposed in which the slow and fast reactions are simulated
separately at each event of the slow reactions. The slow re-
actions are simulated with Gillespie’s algorithm and the fast
reactions are simulated with a Langevin dynamics, assuming
the number of the molecules involved is so large that the
kinetic dynamics converges to a diffusion process. In Ref. 3
a similar multiscale scheme is proposed in which the fast
dynamics is simulated with deterministic ordinary differen-
tial equations. The approaches in Refs. 1 and 3 require that
the volume of the system be sufficiently large in addition to
having well-separated rates. In Ref. 2 a scheme based on the
quasiequilibrium assumption is proposed, assuming that the
probability density of the fast processes conditioned on the
slow processes is known exactly or can be approximated,
e.g., by a Gaussian. The same quasiequilibrium assumption
is used in Refs. 4 and 5 except that the probability density of
the fast processes conditioned on the slow processes is com-
puted via a modified process called the virtual fast process.
The method proposed in Refs. 4 and 5 is more general than
previous methods, but it still has the following limitations. It
applies only to cases when the slow and fast processes are
associated with specific species; the rate functions of the

slow processes are assumed to be simple and are approxi-
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mated empirically by solving a system of algebraic equa-
tions. In contrast, our work relies only on the disparity of the
rates, and makes no a priori assumption on what the slow
and fast variables are, or the analytic form of the rate func-
tions.

In the following we first recall Gillespie’s algorithm, the
stochastic simulation algorithm �SSA� for modeling the gen-
eral chemical kinetic systems, and introduce the nested SSA
for systems with fast and slow rates. Afterwards we discuss
the effective process on the slow time scale and the identifi-
cation of the slow variables. This discussion also helps us to
understand why and how the nested SSA works for systems
with disparate rates. We illustrate the efficiency of the new
algorithm with the example of the stochastic Petri net model
for the heat shock response of E. Coli proposed in Ref. 8.
Finally, we discuss straightforward generalizations of the
method to systems involving more than two time scales, e.g.,
with ultrafast, fast, and slow rates, and to systems in which
the grouping into fast and slow reactions changes dynami-
cally. These generalizations are also tested against numerical
examples to show their efficiency.

We note that the nested SSA is in the same spirit as the
algorithms proposed in Ref. 9 and further developed in Refs.
10 and 11 in the context of stochastic differential equations
that involve different time scales. In the context of determin-
istic differential equations, similar ideas are developed in
Refs. 12 and 13. More generally, ideas of this kind are dis-
cussed for a variety of other applications in Ref. 14.

II. A NESTED STOCHASTIC SIMULATION ALGORITHM

A. The stochastic simulation algorithm

We begin with the general setup. Assume that a well-
mixed, isothermal system has NS species of molecules Si, i
=1, . . . ,NS, and there are MR reaction channels Rj, j
=1, . . . ,MR. Let xi be the number of molecules of species Si.
Then the state of the system is given by

x = �x1, ¯ ,xNR
� � X , �1�

where X denotes the state space. Each reaction Rj is charac-
terized by a rate function aj�x� and a vector � j that describes
the change of the state due to the reaction. We write

Rj = �aj,� j� . �2�

The dynamics of the model is completely specified by the
following rules.

�1� Given the state x, the reactions are independent of each
other on an infinitesimal time interval of duration dt
and the probability for the reaction Rj to happen is
given by aj�x�dt.

�2� The state of the system after Rj is given by x+� j.

These rules specify a Markov process on the state space X
with generator

L�x,y� = �
j=1

MR

aj�x��y=x+�j
, �3�
for x�y and L�x ,x�=−�y�xL�x ,y�.
The standard computer implementation of such a model
is given by the well-known SSA proposed in Refs. 6 and 7
�see also Ref. 15�. Let

a0�x� = �
j=1

MR

aj�x� . �4�

Assume that the current time is t= tn, and the state of the
system is x=xn. The essential steps of the SSA are the fol-
lowing.

�1� Generate independent random numbers r1 and r2 with
uniform distribution on the unit interval. Let

�tn+1 = −
ln r1

a0�x�
, �5�

and kn+1 to be the natural number, such that

1

a0�x� �
j=1

kn+1−1

aj�x� � r2 �
1

a0�x� �
j=1

kn+1

aj�x� . �6�

�2� Update the time and the state of the system

tn+1 = tn + �tn+1, xn+1 = xn + �kn+1
. �7�

B. A seamless algorithm for systems with disparate
rates

Next we consider the case when the rates have very dif-
ferent magnitudes. For simplicity of discussion, we will first
assume that the rates aj�x� are divided into two groups �the
general case with more than two groups is treated in Sec.
V A�: One group corresponding to the fast processes with
rates of order 1 /� and the other group corresponding to the
slow processes with rates of order 1. Here ��1,

a�x� = �as�x�,af�x�� , �8�

where

as�x� = �a1
s�x�, . . . ,aMs

s �x�� = O�1� ,

�9�
af�x� = �a1

f �x�, . . . ,aMf

f �x�� = O�1/�� ,

in dimensionless units. The corresponding reactions and the
associated state change vectors can be grouped accordingly
as

Rs = �as,�s�, Rf = �af,� f� . �10�

As a simple example, consider the system

S1�
a2

f

a1
f

S2, S2�
a2

s

a1
s

S3, S3�
a4

f

a3
f

S4, �11�
with reaction channels given by
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a1
f = 105x1, �1

f = �− 1,1,0,0�;

a2
f = 105x2, �2

f = �1,− 1,0,0�;

a3
f = 105x3, �3

f = �0,0,− 1,1�;
�12�

a4
f = 105x4, �4

f = �0,0,1,− 1�;

a1
s = x2, �1

s = �0,− 1,1,0�;

a2
s = x3, �2

s = �0,1,− 1,0� .

Let us take � to be 10−5, for this example. There are a total of
four species and six reaction channels, with four fast reac-
tions and two slow ones.

For problems of this type, direct application of the SSA
will result in time steps of size � �the total rate a0�x� in �4� is
of order 1 /�� with a total cost of order 1 /� if we want to
advance the whole system through a time interval of order
unity. Most of the cost will be spent on the fast reactions,
which are often of little interest. Indeed for such systems, we
are usually interested in the slow processes since they are the
rate-limiting steps. Here we propose a modified SSA that
captures the slow processes at a cost that is independent of �,
and therefore much less than that of the direct SSA when �
�1. The modified SSA consists of two nested SSA: The
outer SSA is on the slow processes only, but uses modified
slow rates. The inner SSA is on the fast processes only: it
uses the original fast rates and serves to give the modified
slow rates. Let t= tn, x=xn be the current time and state of the
system, respectively. Given �tn ,xn�, do the following.

�1� Inner SSA. Run N-independent replicas of SSA with
the fast reactions Rf = �af ,� f� only, for a time interval of
Tf. During this calculation, compute the modified slow
rates. For j=1, . . . ,Ms, these are

ãj
s =

1

N
�
k=1

N
1

Tf
�

T0

Tf+T0

aj
s�xk����d� , �13�

where xk��� is the kth replica of the auxiliary fast pro-
cess at virtual time � whose initial value is xk�0�=xn,
and T0 is a parameter we choose in order to minimize
the effect of the transients in the auxiliary fast process.
The auxiliary fast process is the same as the virtual fast
process defined in Ref. 5 and we will refer to it as such.

�2� Outer SSA. Run one step of SSA for the modified slow

reactions R̃s= �ãs ,�s� to generate �tn+1 ,xn+1� from
�tn ,xn�.
Then repeat.

Note that we can take N=1 in the above algorithm, but it
is advantageous to take a larger N since the inner SSA can be
trivially parallelized.

A key issue is how long one should run the inner SSA
�how big Tf should be� and how big the error is. Another
important issue is the total cost of this algorithm. We will
discuss these issues later. But before doing so, let us note that
the algorithm as presented is completely seamless and gen-

eral. We do not need to know what the slow and fast vari-
ables are and certainly we do not need to make analytical
approximations to get the effective slow rates.

III. SLOW VARIABLES AND EFFECTIVE DYNAMICS

Even though the formulation of the nested SSA does not
require explicit identification of the slow variables and the
effective rates of the slow process, to understand why and
how the algorithm works, we do need to understand these
issues.

A. Identification of the slow variables

First, we discuss the observables, which are functions of
the state variable x. By definition, slow observables are con-
served quantities during the fast reactions, i.e., ��x� is a slow
observable if for any x�X and any state change vector � f

associated with the fast reactions one has

��x + � f� = ��x� . �14�

This means that the value of the slow observable ��x� is
unaffected by the fast reactions. To find a general represen-
tation of such observables, we consider special slow observ-
ables which are linear functions that satisfy �14�. We call
such slow observables slow variables. It is easy to see that
��x�=b ·x is a slow variable if

b · � f = 0, �15�

for all � f. Let b1 ,b2 , . . . ,bJ be a set of basis vectors that
satisfy �15�. Define

yj = bj · x for j = 1, . . . ,J . �16�

Then y1 ,y2 , . . . ,yJ defines a complete set of slow variables,
i.e., all slow observables can be expressed as functions of
y1 ,y2 , . . . ,yJ. For the example considered in Sec. II B, it is
easy to see that both x1+x2 and x3+x4 are conserved during
the fast reactions, i.e., y1=x1+x2 and y2=x3+x4 are the slow
variables of that system. Note that for this particular ex-
ample, every species is involved in at least one fast reaction.
Therefore there is no slow species in this example. This
means that the methodology proposed in Refs. 4 and 5 would
not result in any changes over the straightforward SSA.

B. Effective dynamics on slow time scales

We can now put the quasiequilibrium assumption in pre-
cise terms. Fix the slow variables y and consider the virtual
fast process defined by retaining only the fast reaction chan-
nels. Two important conclusions can be drawn for this sys-
tem. The first is that the slow variables do not change. The
second is that this system approaches a unique equilibrium
state �which depends on the value of y� on a time scale of
order �. This equilibrium is the desired quasiequilibrium,
which we denote by 	y�x�. The rates for the effective slow
process are obtained by averaging the slow rates with respect
to this quasiequilibrium

āj�y� = �aj�x��y 	 �
x�X

aj�x�	y�x� . �17�

It is obvious that the effective rates are only functions of y.

The effective dynamics is completely specified by
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R̄ = �Rs, ā�y�� . �18�

It is shown in Ref. 16 �see also Ref. 17� by singular pertur-
bation analysis that the original dynamics converges to the
above effective dynamics with an error of order O���. A
formal derivation is also provided in Ref. 2, assuming the
slow variables coincide with some of the reacting species.

C. Convergence and efficiency
of the nested SSA

If we knew ā�y�= �ā1�y� , . . . , āMs
�y�� explicitly, we could

have carried out SSA using these rates. This would capture
the process on the slow time scale, which is what we are
interested in. For convenience, we will call such a procedure
“averaged SSA.” Unfortunately we usually do not have an
explicit expression for the effective rates �17�. The nested
SSA proposed above is a way of getting approximate values
of these rates “on the fly.”

To see why this algorithm should work, it is clear that
the only difference between the nested SSA and the averaged
SSA is that the averaged SSA uses the rates in �17�, whereas
the nested SSA uses the rates in �13�. However, by ergodicity
we have that ã converges to ā when Tf and N go to infinity.
Therefore the results of the two algorithms also become
closer and closer for large Tf and N. Quantitative error esti-
mates can be obtained. The details are given in Ref. 16.
Among other things, it is proved in Ref. 16 that

E
āj − ãj
 � C� e−
T0/�

1 + Tf/�
+

1
�N�1 + Tf/��

 , �19�

for some constants C and 
 which are independent of �.
Here E denotes expectation with respect to the statistics of
the virtual fast process in the inner SSA. The first term on the
right-hand side of �19� measures the deviation from the qua-
siequilibrium if the inner SSA is run only for a time duration
of Tf, starting at T0. 
 measures the rate of convergence for
the virtual fast process to equilibrium. The second term mea-
sures the sampling error resulted from using time and en-
semble averaging on a time interval of duration Tf with an
ensemble of N replicas.

Let us now estimate the cost of the nested SSA. For
simplicity we will take T0=0 here and also in our numerical
examples. One feature of �19� is that this estimate depends
on the ratio Tf /� rather than Tf alone. This means that, when
��1, we can achieve a small error on ãj by choosing Tf /�
�1 and yet have Tf �1 �remember that we have assumed
that the time scale for the slow process is of order 1�. This is
the very reason why the nested SSA is more efficient than a
direct SSA. To quantify this, suppose that we want to com-
pute the results within an error tolerance �. To control each
term in �19� by �, the optimal choice of parameters is

N = Tf/� = 1/�2. �20�

Then the cost for evolving the nested SSA for a unit time is
estimated to be

cost = ã0
s  Na0

f Tf/� = O�1/�2� , �21�
which is independent of �
IV. NUMERICAL EXAMPLE: HEAT SHOCK RESPONSE
OF E. Coli

As an example, we will study a stochastic Petri net
model proposed in Ref. 8 to quantify the response of the
bacteria E. Coli to a sudden temperature increase. This re-
sponse is a complicated mechanism of protection that the
bacteria uses to fight against denaturation �unfolding� of its
constituent proteins induced by the increase of temperature.
This response mechanism is referred to as the heat shock
response. The stochastic Petri net model of the heat shock
response proposed in Ref. 8 involves 14 species of mol-
ecules, as given in Table I together with their initial condi-
tions. These 14 species are involved in 17 reactions as speci-
fied in Table II.

The reaction rate for each reaction is given by the prod-
uct of a rate constant and the molecular numbers of the re-
actants. The rate constants are listed in the middle column of
Table II. For the second-order reactions, the rate constants
are already normalized with the Avogadro constant and cell
volume V=1.510−15 liter. The typical magnitudes of the
corresponding reaction rates ai�x� are also listed in the right
column. The rates and initial values are chosen as in Ref. 3
except for the initial value of DnaJ which is chosen to be
further away from equilibrium to make our test more strin-
gent.

We can see that the last three reactions are much faster
than the others. The time scales of the fast and slow reactions
differ by about five orders of magnitude ��=10−5�. For this
particular example, the slow variables are the reactants in the
slow reactions �the first 14 reactions in Table II� except DnaJ.
The fast variable DnaJ shows up in the coefficients of the
slow reactions marked with ����. According to �18�, the ef-
fective dynamics on the slow time scale is given by averag-
ing the coefficients of the corresponding slow reactions with
respect to the equilibrium of the fast reactions, i.e., one must
use the averaged value �DnaJ�y instead of DnaJ in the reac-
tions marked with ����. This average is computed using an
inner SSA which involves only the last three reactions listed
in Table II, and it is used in an outer SSA which involves the

TABLE I. List of species and their initial value �in number of molecules� in
the Petri net model of heat shock response of E. Coli proposed in. Ref. 8.

Species Initial value

DNA.�32 1
mRNA.�32 17
�32 15
RNAP�32 76
DNA.DnaJ 1
DNA.FtsH 0
DNA.GroEL 1
DnaJ 4640
FtsH 200
GroEL 4314
DnaJ.Unfoldedprotein 5106

Protein 5106

�32 .DnaJ 2959
Unfoldedprotein 2105
first 14 reactions in the table.
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To test the efficiency of the nested SSA and compare it
to a direct SSA, we use the mean value and the variance at
time T=10 of the heat shock sigma factor, �32, as a bench-
mark. A computation of this average by a direct SSA using
N0=1000 realizations led to

�32 = 14.8 ± 0.1, var��32� = 14.2 ± 0.1. �22�

This calculation took 19 719.2 s of CPU time on our ma-
chine. Notice that these expectations must be computed by
ensemble average �not time average� since the system is out
of equilibrium.

To test the nested SSA, first, we make a series of simu-
lations in which we choose the size of the ensemble and the
simulation time of the inner SSA in the nested SSA scheme
according to

�N,Tf/�� = �1,22k/10� , �23�

for different values of k=0,1 ,2 , . . .. The error estimate in
�19� then implies that the error � of the nested SSA should
decay with rate

� = O�2−k� . �24�

Table III gives the total CPU time and the values of �32 and
var��32� obtained by the nested SSA with the parameters in
�23� and using N0=1000 realizations of the outer SSA �same

TABLE II. Reaction list for the heat shock model of E
ci in ai�x�=cixj for the reactions involving one spe
species. The rate magnitude is the value of ai�x� evalu
marked with a ��� in the table are fast: they are used
outer SSA, and the rates of the reactions marked wit

Reaction

DNA.�32→mRNA.�32

mRNA.�32→�32+mRNA.�32

mRNA.�32→degradation
�32→RNAP�32

RNAP�32→�32

�32+DnaJ→�32 .DnaJ ����
DnaJ→degradation ����
�32 .DnaJ→�32+DnaJ
DNA.DnaJ+RNAP�32→DnaJ+DNA.DnaJ+�32

DNA.FtsH+RNAP.�32→FtsH+DNA.FtsH+�32

FtsH→degradation
GroEL→degradation
�32 .DnaJ+FtsH→DnaJ+FtsH
DNA.GroEL+RNAP�32→GroEL+DNA.GroEL+
Protein→Unfoldedprotein ���
DnaJ+Unfoldedprotein→DnaJ.Unfoldedprotein ��
DnaJ.Unfoldedprotein→DnaJ+Unfoldedprotein ��

TABLE III. Efficiency of nested SSA when N=1. Since we used N0

=1000 realizations of the outer SSA to compute �32 and var��32�, the sta-
tistical errors on these quantities is about 0.1.

�N ,Tf /10−6� �1,1� �1,4� �1,16� �1,64� �1,256� �1,1024�

CPU 0.62 1.32 2.98 9.56 35.81 142.08
�32 4.60 8.66 13.60 14.52 14.98 15.00
var��32� 4.41 8.11 12.22 13.13 13.73 14.66
as in the direct SSA�. The relative errors on �32 are shown in
Fig. 1.

Obviously the results produced by the first couple of
tests shown in Table III are very far off from the correct
value. But we can see that the last several values are close to
the correct value, with an error that is comparable to the error
bar in �22�, and the cost is a small fraction of the cost of
direct SSA. The nested SSA is also able to track the time
evolution of the variables in a given realization, as shown in
Fig. 2 where the growth of the number of molecules of
GroEL computed with the nested SSA is compared with the
growth predicted by the direct SSA.

Next, we make a second series of simulations in which
we choose the size of the ensemble and the simulation time
of the inner SSA in the nested SSA scheme as

�N,Tf/�� = �2k,2k/10�, k = 0,1,2, . . . . �25�

The error estimate �19� then implies that the error � of the
nested SSA should also decay with a rate of the form of �24�.
Table IV gives the total CPU time for the nested SSA with
the parameters in �25�, and the value of �32 and var��32�
obtained. The relative errors on �32 is shown in Fig. 1.

V. GENERALIZATIONS

The nested SSA proposed in Sec. II B can be straightfor-
wardly generalized to systems involving more than two sepa-
rate time scales and to systems where the grouping into fast
and slow variables evolves dynamically. We consider these
generalizations next.

A. Multilevel SSA

Consider a system where the rates aj�x� can be grouped
into three groups: One group corresponding to ultrafast pro-

i proposed in. Ref. 8. The rate constant is the number
or in ai�x�=cixjxk for the reactions involving two

at initial time or equilibrium. The last three reactions
e inner SSA. All the other reactions are used in the

��� are averaged according to �17�.

Rate constant Rates magnitude

1.410−3 1.410−3

0.07 1.19
1.410−6 2.3810−5

0.7 10.5
0.13 9.88
3.6210−3 25.2
6.410−10 2.9710−6

4.410−4 1.30
8 3.71
4.8810−2 0
7.410−11 1.4810−8

1.810−8 7.7610−5

1.4210−5 8.4
0.063 4.78
0.2 106

0.108 107

0.2 106
. Col
cies,
ated
in th

h a �

�32

�
�

cesses with rates of order 1 /�, one group corresponding to
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fast processes with rates of order 1 /�, and one group corre-
sponding to slow processes with rates of order 1. Here �
���1,

a�x� = �as�x�,af�x�,auf�x�� , �26�

where

as�x� = �a1
s�x�, . . . , aMs

s �x�� = O�1� ,

af�x� = �a1
f �x�, . . . , aMf

f �x�� = O�1/�� , �27�

auf�x� = �a1
uf�x�, . . . , aMuf

uf �x�� = O�1/�� .

The corresponding reactions and the associated state change
vectors can then be grouped accordingly as

Rs = �as,�s�, Rf = �af,� f�, Ruf = �auf,�uf� , �28�

and it is easy to see that this case can be handled by using a
nested SSA with three levels. The innermost SSA uses only
the ultrafast rates and serves to compute averaged fast and
slow rates using a formula similar to �13�; the inner SSA uses
only the averaged fast rates and the results are used again to
compute the average slow rates �which are already averaged
with respect to the ultrafast reactions� as in �13�; finally, the

FIG. 1. Relative errors on �32 computed by the nested SSA with different N
and Tf. Notice that the error saturate, not because the error estimate �19�
fails, but because we reach statistical accuracy on the computation of �32

and var��32� with N0=1000 realizations.

FIG. 2. Time evolution in one realization of the number of molecules of
GroEL computed by the direct SSA algorithm �solid line� and the nested

SSA �dashed line�.
outer SSA uses only the averaged slow rates. The cost of
such a nested SSA is independent of � and �, and as before,
precise error estimates can be obtained in terms of Tuf �the
time interval over which the innermost SSA is run�, Nuf �the
number of replicas in the innermost SSA�, Tf �the time inter-
val over which the inner SSA is run�, and Nf �the number of
replicas in the inner SSA�. The generalization to systems
involving more groups of separated rates is straightforward
and simply amounts to using more levels in the nested SSA.

As an example, consider the system

S1�
a2

uf

a1
uf

S2, S3�
a4

uf

a3
uf

S4, S5�
a6

uf

a5
uf

S6, S7�
a8

uf

a7
uf

S8,

�29�

S2�
a2

f

a1
f

S3, S6�
a4

f

a3
f

S7, S3�
a2

s

a1
s

S6,

with the ultrafast reaction channels given by

a1
uf = 2  1012x1, �1

uf = �− 1,1,0,0,0,0,0,0� ,

a2
uf = 3  1012x2, �2

uf = �1,− 1,0,0,0,0,0,0� ,

a3
uf = 2  1012x3, �3

uf = �0,0,− 1,1,0,0,0,0� ,

a4
uf = 3  1012x4, �4

uf = �0,0,1,− 1,0,0,0,0� ,

�30�
a5

uf = 2  1012x5, �5
uf = �0,0,0,0,− 1,1,0,0� ,

a6
uf = 3  1012x6, �6

uf = �0,0,0,0,1,− 1,0,0� ,

a7
uf = 2  1012x7, �7

uf = �0,0,0,0,0,0,− 1,1� ,

a8
uf = 3  1012x8, �8

uf = �0,0,0,0,0,0,1,− 1� ,

the fast reaction channels given by

TABLE IV. Efficiency of nested SSA with multiple replicas in the inner
SSA. Again the statistical errors on �32 and var��32� is about 0.1.

�N ,Tf /10−6� �1,1� �2,2� �4,4� �8,8� �16,16� �32,32�

CPU 0.64 1.38 3.17 10.13 36.94 142.65
�32 4.60 9.06 13.85 14.57 15.04 14.90
var��32� 4.41 8.68 13.07 13.63 14.01 14.38

TABLE V. Efficiency and accuracy of the adaptive nested SSA.

Tf /10−5 1 4 16 64 256

CPU 298.2 304.4 310.3 347.9 426.7
x1 27.07 27.10 27.28 27.20 27.32
var�x1� 20.03 20.25 20.04 20.22 20.57
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a1
f = 2  106x2, �1

f = �0,− 1,1,0,0,0,0,0� ,

a2
f = 3  106x3, �2

f = �0,1,− 1,0,0,0,0,0� ,

�31�
a3

f = 2  106x6, �3
f = �0,0,0,0,0,− 1,1,0� ,

a4
f = 3  106x7, �4

f = �0,0,0,0,0,1,− 1,0� ,

and the slow reaction channels given by

a1
s = 2  x3, �1

s = �0,0,− 1,0,0,1,0,0� ,

�32�
a2

s = 3  x6, �2
s = �0,0,1,0,0,− 1,0,0� .

Thus, with respect to the ultrafast reactions, the slow vari-
ables are x1+x2, x3+x4, x5+x6, and x7+x8, whereas with re-
spect to the fast reactions, the slow variables are x1+x2+x3

+x4 and x5+x6+x7+x8. Note that all variables are involved in
at least one ultrafast reaction, and there is a 12 order of
magnitude difference between the ultrafast rates and the slow
ones ��=10−12 and �=10−6 in this example�. As a test for the
nested SSA, we took as initial condition

�x1,x2,x3,x4,x5,x6,x7,x8� = �1,0,0,0,0,0,0,0� , �33�

and computed the equilibrium distribution for this system.
The equilibrium distribution can easily be computed exactly
for this system and it is compared in Fig. 3 with the result of
the nested SSA up to time T0=104 using

�Nf,Nuf,Tf,Tuf� = �1,1,10−4,10−10� . �34�

The result in Fig. 3 shows that the time interval �0,T0�
= �0,104� was long enough to estimate very accurately the
equilibrium distribution of the system. In contrast, since the
average time step in a direct SSA is of the order of �
=10−12, it is impossible to run the direct SSA up to time T0

=104. To compare the efficiency of the nested SSA and the
direct SSA, we fixed the total number of iterations in the
calculation. The calculation with the nested SSA using the
parameters in �34� requires O�108� iterations. With the same
number of iterations, the direct SSA only advanced to time
T0=O�10−4�, which is way too small to produce an accurate
estimate for the equilibrium distribution. In fact, the prob-

FIG. 3. The exact equilibrium distribution of example �29� �solid line� is
compared to the one estimated by the nested SSA �dashed line�. The two
histograms can barely be distinguished.
ability that the system has visited any state other than S1, S2,
S3, and S4 by time T0� is so small that this event was not
observed in our simulation.

B. Adaptive SSA

Consider the following reaction:

S1�
a2

a1

S2, S1�
a4

a3

S3, 2S2 + S3�
a6

a5

3S4. �35�

The reaction rates and the state change vectors are

a1 = x1, �1 = �− 1, + 1,0,0� ,

a2 = x2, �2 = �+ 1,− 1,0,0� ,

a3 = x1, �3 = �− 1,0, + 1,0� ,

�36�
a4 = x3, �4 = �+ 1,0,− 1,0� ,

a5 = 2x2�x2 − 1�x3, �5 = �0,− 1,− 2, + 3� ,

a6 = 2x4�x4 − 1��x4 − 2�, �6 = �0, + 1, + 2,− 3� .

Let us choose the initial condition to be

�x1,x2,x3,x3� = �100,3,3,3� . �37�

At the beginning, when the concentrations of S2 and S3 are
low, all the reactions are slow. As the number of S2 and S3

grows, the last two reactions become faster and faster. Figure
4 shows the evolution of the reactions rates. The ratio of the
time scales reaches �=10−4 during this simulation.

To account for this effect, we dynamically monitor the
set of fast reactions over time. From Fig. 4, we can see that
the time scale separation stabilizes when time t�1.5. We use
direct SSA to simulate the whole system when t�1.5 and
use a two-level nested SSA with the last two reactions as fast
reaction when t�1.5. For more complex examples, more
sophisticated ways of adaptively choosing the fast reaction
set is needed and is discussed in. Ref. 16

To test this adaptive SSA and compare it with the direct
SSA, we again use the mean and the variance at time T=4 of
x1, the number of species S1, as a benchmark. A computation

FIG. 4. The time evolution of the magnitudes of reaction rates a1+a2+a3

+a4 �lower curve� and a5+a6 �upper curve�. It can be seen that rates a1

+a2+a3+a4 keeps low all the time while a5+a6 grows to a very high level.
of the direct SSA with N0=10 000 gives
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x1 = 27.33 ± 0.2, var�x1� = 20.47 ± 0.2. �38�

This calculation took 1144.9 s of CPU time on our machine.
The results are shown in Table V.

To test the nested SSA, we make a series of simulations
in which the size of the ensemble and simulation time of the
inner SSA in the nested SSA scheme are chosen to be

�N,Tf� = �1,22k  10−5� , �39�

for different values of k=0,1 ,2 , . . .. The error is expected to
be

� = O�2−k� . �40�

The following table gives the CPU times and values of the
mean and variance of x1 using N0=10 000. The relative er-
rors of the mean are shown in the Fig. 5. The results are
consistent with the examples discussed earlier.

VI. CONCLUDING REMARKS

In summary, we have presented a simple strategy for
identifying the system of slow reaction dynamics in models
of stochastic chemical kinetics with disparate rates. This
leads to a general and seamless multiscale method that cap-
tures the dynamics of the system over the slow time scale

FIG. 5. The relative error on x1 in the adpative nested SSA with the param-
eters as in �39�. The scaling of the error in consistent with �40�.
with a much smaller cost than the direct SSA. This multi-
scale method is a small modification of the direct SSA, in the
form of a nested SSA, with inner loops for the fast reactions,
and outer loop for the slow reactions. The number of groups
can be more than two, and the grouping into fast and slow
reactions can be done adaptively. The efficiency of the nested
SSA has been illustrated through a series of examples. The
algorithm itself does not rely on undestanding the slow and
fast variables, even though such an understanding is impor-
tant for the analysis of the algorithm.
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