Math 421 / Homework 9.4

- # 3 Suppose that A is open in \mathbb{R}^n and $\mathbf{f} \colon A \to \mathbb{R}^m$. Prove that \mathbf{f} is continuous on A if and only if $\mathbf{f}^{-1}(V)$ is open in \mathbb{R}^n for every open subset V of \mathbb{R}^m .
- # 4 Suppose that A is closed in \mathbb{R}^n and $\mathbf{f}: A \to \mathbb{R}^m$. Prove that \mathbf{f} is continuous on A if and only if $\mathbf{f}^{-1}(E)$ is closed in \mathbb{R}^n for every closed subset E of \mathbb{R}^m .
- # 6 Prove that

$$f(x,y) = \begin{cases} e^{-1/|x-y|} & x \neq y \\ 0 & x = y \end{cases}$$

is continuous on \mathbf{R}^2 .

- # 7 Let H be a nonempty, closed, bounded subset of \mathbf{R}^n .
 - (a) Suppose that $\mathbf{f} \colon H \to \mathbf{R}^m$ is continuous. Prove that

$$\|\mathbf{f}\|_{H} := \sup_{\mathbf{x}\in H} \|\mathbf{f}(\mathbf{x})\|$$

is finite and there exists an $\mathbf{x}_0 \in H$ such that $\|\mathbf{f}(\mathbf{x}_0)\| = \|\mathbf{f}\|_H$.

(b) A sequence of functions $\mathbf{f}_k \colon H \to \mathbf{R}^m$ is said to **converge uniformly on** H to a function $\mathbf{f} \colon H \to \mathbf{R}^m$ if for every $\epsilon > 0$ there exists an $N \in \mathbf{N}$ such that

 $k \geq N$ and $\mathbf{x} \in H$ imply $\|\mathbf{f}_k(\mathbf{x}) - \mathbf{f}(\mathbf{x})\| < \epsilon$.

Show that $\|\mathbf{f}_k - \mathbf{f}\|_H \to 0$ as $k \to \infty$ if and only if \mathbf{f}_k converges uniformly to \mathbf{f} on H.

(c) Prove that a sequence of functions \mathbf{f}_k converges uniformly on H if and only if for every $\epsilon > 0$ there exists an $n \in N$ such that

 $k, j \ge N$ implies $\|\mathbf{f}_k - \mathbf{f}_j\|_H < \epsilon$.