Math 421 / Homework 9.3

2 Compute the iterated limits at (0,0) of each of the following functions. Determine which of these functions has a limit as $(x, y) \rightarrow (0,0)$ in \mathbb{R}^2 , and prove that the limit exists.

(a)
$$f(x,y) = \frac{\sin x \sin y}{x^2 + y^2}$$

(b) $f(x,y) = \frac{x^2 + y^4}{x^2 + 2y^4}$
(c) $f(x,y) = \frac{x-y}{(x^2 + y^2)^{\alpha}}$, where $\alpha < 1/2$

3 Prove that each of the following functions has a limit as $(x, y) \to (0, 0)$ in \mathbb{R}^2 .

(a)
$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}, (x,y) \neq (0,0)$$

(b) $f(x,y) = \frac{|x|^{\alpha}y^4}{x^2 + y^4}, (x,y) \neq (0,0)$, where α is any positive number.

5 Suppose that $\mathbf{a} \in \mathbf{R}^n$, that $\mathbf{L} \in \mathbf{R}^m$, and that $\mathbf{f} \colon \mathbf{R}^n \to \mathbf{R}^m$. Prove that if $\mathbf{f}(\mathbf{x}) \to \mathbf{L}$ as $\mathbf{x} \to \mathbf{a}$, then there is an open set V containing \mathbf{a} and a constant M > 0 such that $\|\mathbf{f}(\mathbf{x})\| \leq M$ for all $\mathbf{x} \in V$.