Math 421 / Homework 9.3

\# 2 Compute the iterated limits at $(0,0)$ of each of the following functions. Determine which of these functions has a limit as $(x, y) \rightarrow(0,0)$ in \mathbf{R}^{2}, and prove that the limit exists.
(a) $f(x, y)=\frac{\sin x \sin y}{x^{2}+y^{2}}$
(b) $f(x, y)=\frac{x^{2}+y^{4}}{x^{2}+2 y^{4}}$
(c) $f(x, y)=\frac{x-y}{\left(x^{2}+y^{2}\right)^{\alpha}}$, where $\alpha<1 / 2$.
\# 3 Prove that each of the following functions has a limit as $(x, y) \rightarrow(0,0)$ in \mathbf{R}^{2}.
(a) $f(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}},(x, y) \neq(0,0)$
(b) $f(x, y)=\frac{|x|^{\alpha} y^{4}}{x^{2}+y^{4}},(x, y) \neq(0,0)$, where α is any positive number.
\# 5 Suppose that $\mathbf{a} \in \mathbf{R}^{n}$, that $\mathbf{L} \in \mathbf{R}^{m}$, and that $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Prove that if $\mathbf{f}(\mathbf{x}) \rightarrow \mathbf{L}$ as $\mathbf{x} \rightarrow \mathbf{a}$, then there is an open set V containing \mathbf{a} and a constant $M>0$ such that $\|\mathbf{f}(\mathbf{x})\| \leq M$ for all $\mathbf{x} \in V$.

