Math 421 / Homework 9.2

\# 5 Let E be closed and bounded in \mathbf{R}, and suppose that for each $x \in E$ there is a function f_{x}, nonnegative, nonconstant, increasing, and C^{∞} on \mathbf{R}, such that $f_{x}(x)>0$ and $f_{x}^{\prime}(y)=0$ for $y \notin E$. Prove that there exists a nonnegative, nonconstant, increasing C^{∞} function f on \mathbf{R} such that $f(y)>0$ for all $y \in E$ and $f^{\prime}(y)=0$ for all $y \notin E$.
\# 6 (Note that this problem is not exactly the one in the text; the assumption that K is compact is dropped.) Suppose that $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and that $\mathbf{a} \in K$, where K is a connected subset of \mathbf{R}^{n}. Suppose further that for each $\mathbf{x} \in K$ there exists a $\delta_{\mathbf{x}}>0$ such that $\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{y})$ for all $\mathbf{y} \in B_{\delta_{\mathbf{x}}}(\mathbf{x})$. Prove that \mathbf{f} is constant on K; that is, $\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})$ for all $\mathbf{x} \in K$.
\# $\mathbf{7}$ Define the distance between two nonempty subsets A, B of \mathbf{R}^{n} by

$$
\operatorname{dist}(A, B):=\inf \{\|\mathbf{x}-\mathbf{y}\|: \mathbf{x} \in A, \mathbf{y} \in B\}
$$

(a) Prove that if A and B are compact sets which satisfy $A \cap B=\emptyset$, then $\operatorname{dist}(A, B)>0$.
(b) Show that there exist nonempty, closed sets A, B in \mathbf{R}^{2} such that $A \cap B=$ \emptyset but $\operatorname{dist}(A, B)=0$.

