Math 421 / Homework 8.4

\# 2 For each of the following sets, sketch E^{o}, \bar{E}, and ∂E.
(a) $E=\left\{(x, y): x^{2}+4 y^{2} \leq 1\right\}$
(b) $E=\left\{(x, y): x^{2}-2 x+y^{2}=0\right\} \cup\{(x, 0): x \in[2,3]\}$
(c) $E=\left\{(x, y): y \geq x^{2}, 0 \leq y<1\right\}$
(d) $E=\left\{(x, y): x^{2}-y^{2}<1,-1<y<1\right\}$
\# 3 Suppose that $A \subseteq B \subseteq \mathbf{R}^{n}$. Prove that

$$
\bar{A} \subseteq \bar{B}, \quad A^{o} \subseteq B^{o}
$$

\# 4 Let E be a subset of \mathbf{R}^{n}.
(a) Prove that every subset $A \subseteq E$ contains a set B which is the largest subset of A that is relatively open in E.
(b) Prove that every subset $A \subseteq E$ is contained in a set B which is the smallest subset of E containing A that is relatively closed in E.
\# 7 Suppose that $E \subset \mathbf{R}^{n}$ is connected and that $E \subseteq A \subseteq \bar{E}$. Prove that A is connected.
\# 9 Show that Theorem 8.37 is best possible in the following sense.
(a) There exist sets A, B in \mathbf{R} such that $(A \cup B)^{o} \neq A^{o} \cup B^{o}$.
(b) There exist sets A, B in \mathbf{R} such that $\overline{A \cap B} \neq \bar{A} \cap \bar{B}$.
(c) There exist sets A, B in \mathbf{R} such that $\partial(A \cup B) \neq \partial A \cup \partial B$ and $\partial(A \cap B) \neq$ $\partial A \cup \partial B$.

