Math 421 / Homework 8.4

2 For each of the following sets, sketch E^{o} , \overline{E} , and ∂E .

(a) $E = \{(x, y) : x^2 + 4y^2 \le 1\}$ (b) $E = \{(x, y) : x^2 - 2x + y^2 = 0\} \cup \{(x, 0) : x \in [2, 3]\}$ (c) $E = \{(x, y) : y \ge x^2, 0 \le y < 1\}$ (d) $E = \{(x, y) : x^2 - y^2 < 1, -1 < y < 1\}$

3 Suppose that $A \subseteq B \subseteq \mathbf{R}^n$. Prove that

$$\bar{A} \subseteq \bar{B}, \quad A^o \subseteq B^o.$$

- # 4 Let E be a subset of \mathbf{R}^n .
 - (a) Prove that every subset $A \subseteq E$ contains a set B which is the largest subset of A that is relatively open in E.
 - (b) Prove that every subset $A \subseteq E$ is contained in a set B which is the smallest subset of E containing A that is relatively closed in E.
- # 7 Suppose that $E \subset \mathbf{R}^n$ is connected and that $E \subseteq A \subseteq \overline{E}$. Prove that A is connected.
- # 9 Show that Theorem 8.37 is best possible in the following sense.
 - (a) There exist sets A, B in **R** such that $(A \cup B)^o \neq A^o \cup B^o$.
 - (b) There exist sets A, B in **R** such that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.
 - (c) There exist sets A, B in **R** such that $\partial(A \cup B) \neq \partial A \cup \partial B$ and $\partial(A \cap B) \neq \partial A \cup \partial B$.