Math 421 / Homework 8.3

\# 1 Sketch each of the following sets. Identify which of the following sets are open, which are closed, and which are neither. Also discuss the connectivity of each set.
(b) $E=\left\{(x, y): x^{2}+4 y^{2} \leq 1\right\}$
(c) $E=\left\{(x, y): y \geq x^{2}, 0 \leq y<1\right\}$
(d) $E=\left\{(x, y): x^{2}-y^{2}>1,-1<y<1\right\}$
(e) $E=\left\{(x, y): x^{2}-2 x+y^{2}=0\right\} \cup\{(x, 0): x \in[2,3]\}$
\# $\mathbf{2}$ Let $n \in \mathbf{N}$, let $\mathbf{a} \in \mathbf{R}^{n}$, let $s, r \in \mathbf{R}$ with $0<s<r$, and set $V=\left\{\mathbf{x} \in \mathbf{R}^{n}: s<\|\mathbf{x}-\mathbf{a}\|<r\right\}, \quad E=\left\{\mathbf{x} \in \mathbf{R}^{n}: s \leq\|\mathbf{x}-\mathbf{a}\| \leq r\right\}$.
Prove that V is open and E is closed.
\# 5 (a) Let E_{1} denote the closed ball centered at $(0,0)$ of radius 1 and $E_{2}=$ $B_{\sqrt{2}}(2,0)$, and sketch a graph of the set

$$
U:=\left\{(x, y): x^{2}+y^{2} \leq 1 \text { and } x^{2}-4 x+y^{2}+2<0\right\} .
$$

(b) Decide whether U is relatively open or relatively closed in E_{1}. Explain your answer.
(c) Decide whether U is relatively open or relatively closed in E_{2}. Explain your answer.
$\# 7$ (b) If $\left\{E_{\alpha}\right\}_{\alpha \in A}$ is a collection of connected sets in \mathbf{R}^{n} and $\cap_{\alpha \in A} E_{\alpha} \neq \emptyset$, prove that

$$
E=\cup_{\alpha \in A} E_{\alpha}
$$

is connected.
(d) Find two connected sets A and B in \mathbf{R}^{2} with $A \cap B \neq \emptyset$, but $A \cap B$ is not connected.
\# 9 Show that if E is closed in \mathbf{R}^{n} and $\mathbf{a} \notin E$, then

$$
\inf _{\mathbf{x} \in E}\|\mathbf{x}-\mathbf{a}\|>0
$$

