Math 421 / Homework 8.2

\#2(a) Find an equation of the hyperplane through the points $(1,0,0,0),(2,1,0,0),(0,1,1,0)$ and $(0,4,0,1)$.
\# 3 Find two lines in \mathbf{R}^{3} which are not parallel but do not intersect.
\# 5 Suppose that $\mathbf{T} \in \mathcal{L}\left(\mathbf{R}^{n} ; \mathbf{R}^{m}\right)$ for some $n, m \in \mathbf{N}$.
(a) If $\mathbf{T}(1,1)=(3, \pi, 0)$ and $\mathbf{T}(0,1)=(4,0,1)$, find the matrix representative of \mathbf{T}.
(b) If $\mathbf{T}(1,1,0)=(e, \pi), \mathbf{T}(0,-1,1)=(1,0)$, and $\mathbf{T}(1,1,-1)=(1,2)$, find the matrix representative of \mathbf{T}.
(c) If $\mathbf{T}(0,1,1,0)=(3,5), \mathbf{T}(0,1,-1,0)=(5,3)$ and $\mathbf{T}(0,0,0,-1)=(\pi, 3)$, find the matrix representative of \mathbf{T}.
\# 6 Suppose that $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{R}^{3}$ are three points which do not lie on the same straight line and that Π is the plane which contains the points $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Prove that an equation of Π is given by

$$
\operatorname{det}\left[\begin{array}{ccc}
x-a_{1} & y-a_{2} & z-a_{3} \\
b_{1}-a_{1} & b_{2}-a_{2} & b_{3}-a_{3} \\
c_{1}-a_{1} & c_{2}-a_{2} & c_{3}-a_{3}
\end{array}\right]=0 .
$$

\# 10(a) For $\mathbf{f}(x)=\left(x^{2}, \sin x\right)$, find the matrix representative of a linear transformation $\mathbf{T} \in \mathcal{L}\left(\mathbf{R} ; \mathbf{R}^{2}\right)$ which satisfies

$$
\lim _{h \rightarrow 0} \frac{\|\mathbf{f}(x+h)-\mathbf{f}(x)-\mathbf{T}(h)\|}{h}=0 .
$$

\# 11 Fix $\mathbf{T} \in \mathcal{L}\left(\mathbf{R}^{n} ; \mathbf{R}^{m}\right)$. Set

$$
\begin{gathered}
M_{1}:=\sup _{\|\mathbf{x}\|=1}\|\mathbf{T}(\mathbf{x})\| \text { and } \\
M_{2}:=\inf \left\{C>0 \quad:\|\mathbf{T}(\mathbf{x})\| \leq C\|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbf{R}^{n}\right\} .
\end{gathered}
$$

(a) Prove that $M_{1} \leq\|\mathbf{T}\|$.
(b) Using the linear property of \mathbf{T}, prove that if $\mathbf{x} \neq 0$, then

$$
\frac{\|\mathbf{T}(\mathbf{x})\|}{\|\mathbf{x}\|} \leq M_{1} .
$$

(c) Prove that $M_{1}=M_{2}=\|\mathbf{T}\|$.

