Math 421 / Homework 5.4

\# 1 Evaluate the following improper integrals.
(a)

$$
\int_{1}^{\infty} \frac{1+x}{x^{3}} d x
$$

(c)

$$
\int_{0}^{\pi / 2} \frac{\cos x}{\sqrt[3]{\sin x}} d x
$$

(d)

$$
\int_{0}^{1} \ln x d x
$$

\# 2 For each of the following, find all values of $p \in \mathbf{R}$ for which f is improperly integrable on I.
(a) $f(x)=1 / x^{p}, \quad I=(1, \infty)$
(b) $f(x)=1 / x^{p}, \quad I=(0,1)$
(d) $f(x)=1 /\left(1+x^{p}\right), \quad I=(0, \infty)$
\# 7 (a) Suppose that f is improperly integrable on $(0, \infty)$. Prove that if $L=$ $\lim _{x \rightarrow \infty} f(x)$ exists, then $L=0$.
(b) Let

$$
f(x)= \begin{cases}1 & n \leq x<n+2^{-n}, n \in \mathbf{N} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that f is improperly integrable on $(0, \infty)$ but $\lim _{x \rightarrow \infty} f(x)$ does not exist.
\# 8 Prove that if f is absolutely integrable on $[1, \infty)$, then

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} f\left(x^{n}\right) d x=0
$$

\# 10 (a) Prove that

$$
\int_{0}^{\pi / 2} e^{-a \sin x} d x \leq \frac{2}{a}
$$

for all $a>0$.
(b) What happens if $\cos x$ replaces $\sin x$?

