Math 421 / Homework 5.3

(b)

(c)

(d)

1 Let f be continuous, find F'(x) for each of the following functions. (a)

$$F(x) = \int_{x^2}^1 f(t) \, dt$$

$$F(x) = \int_{x^2}^{x^3} f(t) dt$$

$$F(x) = \int_0^{x \cos x} tf(t) \, dt$$

$$F(x) = \int_0^x f(t-x) \, dt$$

2 Suppose that f is nonnegative and continuous on [1, 2] and that $\int_1^2 x^k f(x) dx = 5 + k^2$ for k = 0, 1, 2. Prove that each of the following statements is correct. (a)

(b)
(c)

$$\int_{1}^{4} f(\sqrt{x}) dx = 12$$
(b)

$$\int_{\sqrt{2}/2}^{1} f(\frac{1}{x^{2}}) dx \leq \frac{5}{2}$$
(c)

$$\int_{0}^{1} x^{2} f(x+1) dx = 2$$

6 If f is continuous on [a, b] and there exist numbers $\alpha \neq \beta$ such that

$$\alpha \int_{a}^{c} f(x) \, dx + \beta \int_{c}^{b} f(x) \, dx = 0$$

holds for all $c \in (a, b)$, prove that f(x) = 0 for all $x \in [a, b]$.

9 Suppose that $f: [a, b] \to \mathbf{R}$ is continuously differentiable and 1-1 on [a, b]. Prove that

$$\int_{a}^{b} f(x) \, dx + \int_{f(a)}^{f(b)} f^{-1}(x) \, dx = bf(b) - af(a).$$