Math 421 / Homework 5.3

\# 1 Let f be continuous, find $F^{\prime}(x)$ for each of the following functions.

$$
\begin{equation*}
F(x)=\int_{x^{2}}^{1} f(t) d t \tag{a}
\end{equation*}
$$

(b)

$$
F(x)=\int_{x^{2}}^{x^{3}} f(t) d t
$$

(c)

$$
F(x)=\int_{0}^{x \cos x} t f(t) d t
$$

(d)

$$
F(x)=\int_{0}^{x} f(t-x) d t
$$

\# 2 Suppose that f is nonnegative and continuous on $[1,2]$ and that $\int_{1}^{2} x^{k} f(x) d x=$ $5+k^{2}$ for $k=0,1,2$. Prove that each of the following statements is correct.
(a)

$$
\int_{1}^{4} f(\sqrt{x}) d x=12
$$

(b)

$$
\int_{\sqrt{2} / 2}^{1} f\left(\frac{1}{x^{2}}\right) d x \leq \frac{5}{2}
$$

(c)

$$
\int_{0}^{1} x^{2} f(x+1) d x=2
$$

\# 6 If f is continuous on $[a, b]$ and there exist numbers $\alpha \neq \beta$ such that

$$
\alpha \int_{a}^{c} f(x) d x+\beta \int_{c}^{b} f(x) d x=0
$$

holds for all $c \in(a, b)$, prove that $f(x)=0$ for all $x \in[a, b]$.
\# 9 Suppose that $f:[a, b] \rightarrow \mathbf{R}$ is continuously differentiable and 1-1 on $[a, b]$. Prove that

$$
\int_{a}^{b} f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(x) d x=b f(b)-a f(a)
$$

