Math 421 / Homework 5.2

\# 1 Use the connection between integrals and areas, evaluate each of the following integrals.
(a)

$$
\int_{-2}^{2}|x+1| d x
$$

(b)

$$
\int_{-2}^{2}(|x+1|+|x|) d x
$$

(c)

$$
\int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x
$$

\# 7 Suppose that f is integrable on $[a, b]$, that $x_{0}=a$, and that $\left(x_{n}\right)$ is a sequence of numbers in $[a, b]$ such that $x_{n} \uparrow b$ as $n \rightarrow \infty$. Prove that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \int_{x_{k}}^{x_{k+1}} f(x) d x
$$

\# 9 Let $f:[a, b] \rightarrow \mathbf{R}, a=x_{0}<x_{1}<\cdots<x_{n}=b$, and suppose that $f\left(x_{k}+\right)$ exists and is finite for $k=0,1, \cdots, n-1$ and $f\left(x_{k}-\right)$ exists and is finite for $k=1,2, \cdots, n$. Show that if f is continuous on each subinterval $\left(x_{k-1}, x_{k}\right)$, then f is integrable on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(x) d x
$$

