Math 421 / Homework 5.2

 $\# \ 1$ Use the connection between integrals and areas, evaluate each of the following integrals.

(a)

$$\int_{-2}^{2} |x+1| dx$$
(b)

$$\int_{-2}^{2} (|x+1|+|x|) dx$$
(c)

$$\int_{-a}^{a} \sqrt{a^2 - x^2} dx$$

7 Suppose that f is integrable on [a, b], that $x_0 = a$, and that (x_n) is a sequence of numbers in [a, b] such that $x_n \uparrow b$ as $n \to \infty$. Prove that

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{k=0}^{n} \int_{x_{k}}^{x_{k+1}} f(x) \, dx.$$

9 Let $f: [a,b] \to \mathbf{R}$, $a = x_0 < x_1 < \cdots < x_n = b$, and suppose that $f(x_k+)$ exists and is finite for $k = 0, 1, \cdots, n-1$ and $f(x_k-)$ exists and is finite for $k = 1, 2, \cdots, n$. Show that if f is continuous on each subinterval (x_{k-1}, x_k) , then f is integrable on [a, b] and

$$\int_{a}^{b} f(x) \, dx = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(x) \, dx.$$