Math 421 / Homework 11.6

- # 1 For each of the following functions, prove that f⁻¹ exists and is differentiable in some nonempty, open set containing (a, b), and compute D(f⁻¹)(a, b).
 (a) f(u, v) = (3u v, 2u + 5v) at any (a, b) ∈ R².
 (b) (c) f(u, v) = (uv, u² + v²) at (a, b) = (2, 5).
- # 5 Given nonzero numbers $x_0, y_0, u_0, v_0, s_0, t_0$ which satisfy the simultaneous equations

(*)
$$u^{2} + sx + ty = 0$$
$$v^{2} + tx + sy = 0$$
$$2s^{2}x + 2t^{2}y - 1 = 0$$
$$s^{2}x - t^{2}y = 0,$$

prove that there exist functions u(x, y), v(x, y), s(x, y), t(x, y), and an open ball *B* containing (x_0, y_0) , such that u, v, s, t are continuously differentiable and satisfy (*) on *B*, and such that $u(x_0, y_0) = u_0$, $v(x_0, y_0) = v_0$, $s(x_0, y_0) = s_0$, and $t(x_0, y_0) = t_0$.

- # 6 Let $E = \{(x, y) : 0 < y < x\}$ and set $\mathbf{f}(x, y) = (x + y, xy)$ for $(x, y) \in E$.
 - (a) Prove that **f** is 1-1 from E onto $\{(s,t) : s > 2\sqrt{t}, t > 0\}$ and find a formula for $\mathbf{f}^{-1}(s,t)$.
 - (b) Use the Inverse Function Theorem to compute $D(\mathbf{f}^{-1})(\mathbf{f}(x,y))$ for $(x,y) \in E$.
 - (c) Use the formula you obtain from part (a) to compute $D(\mathbf{f}^{-1})(s,t)$ directly. Check to see that this agrees with the one you found in part (b).
- # 9 Let $F: \mathbf{R}^3 \to \mathbf{R}$ be continuously differentiable in some open set containing (a, b, c) with F(a, b, c) = 0 and $\nabla F(a, b, c) \neq 0$.
 - (a) Prove that the graph of the relation F(x, y, z) = 0; that is, the set $\mathcal{G} = \{(x, y, z) : F(x, y, z) = 0\}$, has a tangent plane at (a, b, c).
 - (b) Prove that a normal of the tangent plane to \mathcal{G} at (a, b, c) is given by $\nabla F(a, b, c)$.
- # 11 Let \mathcal{H} be the hyperboloid of one sheet, given by $x^2 + y^2 z^2 = 1$.
 - (a) Use Exercise # 9 above to prove that at every point $(a, b, c) \in \mathcal{H}$, \mathcal{H} has a tangent plane whose normal is given by (-a, -b, c).
 - (b) Find an equation of each plane tangent to \mathcal{H} which is perpendicular to the *xy*-plane.
 - (c) Find an equation of each plane tangent to \mathcal{H} which is parallel to the plane x + y z = 1.