Math 421 / Homework 11.6

\# 1 For each of the following functions, prove that \mathbf{f}^{-1} exists and is differentiable in some nonempty, open set containing (a, b), and compute $D\left(\mathbf{f}^{-1}\right)(a, b)$.
(a) $\mathbf{f}(u, v)=(3 u-v, 2 u+5 v)$ at any $(a, b) \in \mathbf{R}^{2}$.
(c) $\mathbf{f}(u, v)=\left(u v, u^{2}+v^{2}\right)$ at $(a, b)=(2,5)$.
\# 5 Given nonzero numbers $x_{0}, y_{0}, u_{0}, v_{0}, s_{0}$, t_{0} which satisfy the simultaneous equations

$$
\begin{align*}
u^{2}+s x+t y & =0 \\
v^{2}+t x+s y & =0 \\
2 s^{2} x+2 t^{2} y-1 & =0 \tag{*}\\
s^{2} x-t^{2} y & =0,
\end{align*}
$$

prove that there exist functions $u(x, y), v(x, y), s(x, y), t(x, y)$, and an open ball B containing $\left(x_{0}, y_{0}\right)$, such that u, v, s, t are continuously differentiable and satisfy $(*)$ on B, and such that $u\left(x_{0}, y_{0}\right)=u_{0}, v\left(x_{0}, y_{0}\right)=v_{0}, s\left(x_{0}, y_{0}\right)=s_{0}$, and $t\left(x_{0}, y_{0}\right)=t_{0}$.
\# $\mathbf{6}$ Let $E=\{(x, y): 0<y<x\}$ and set $\mathbf{f}(x, y)=(x+y, x y)$ for $(x, y) \in E$.
(a) Prove that \mathbf{f} is $1-1$ from E onto $\{(s, t): s>2 \sqrt{t}, t>0\}$ and find a formula for $\mathbf{f}^{-1}(s, t)$.
(b) Use the Inverse Function Theorem to compute $D\left(\mathbf{f}^{-1}\right)(\mathbf{f}(x, y))$ for $(x, y) \in$ E.
(c) Use the formula you obtain from part (a) to compute $D\left(\mathbf{f}^{-1}\right)(s, t)$ directly. Check to see that this agrees with the one you found in part (b).
\# $\mathbf{9}$ Let $F: \mathbf{R}^{3} \rightarrow \mathbf{R}$ be continuously differentiable in some open set containing (a, b, c) with $F(a, b, c)=0$ and $\nabla F(a, b, c) \neq 0$.
(a) Prove that the graph of the relation $F(x, y, z)=0$; that is, the set $\mathcal{G}=$ $\{(x, y, z): F(x, y, z)=0\}$, has a tangent plane at (a, b, c).
(b) Prove that a normal of the tangent plane to \mathcal{G} at (a, b, c) is given by $\nabla F(a, b, c)$.
\# 11 Let \mathcal{H} be the hyperboloid of one sheet, given by $x^{2}+y^{2}-z^{2}=1$.
(a) Use Exercise \# 9 above to prove that at every point $(a, b, c) \in \mathcal{H}, \mathcal{H}$ has a tangent plane whose normal is given by $(-a,-b, c)$.
(b) Find an equation of each plane tangent to \mathcal{H} which is perpendicular to the $x y$-plane.
(c) Find an equation of each plane tangent to \mathcal{H} which is parallel to the plane $x+y-z=1$.

