Math 421 / Homework 11.5

\# 1 (a) Write out an expression in powers of $(x+1)$ and $(y-1)$ for $f(x, y)=$ $x^{2}+x y+y^{2}$.
(b) Write Taylor's Formula for $f(x, y)=\sqrt{x}+\sqrt{y}$ at $\mathbf{a}=(1,4)$ with degree $p=3$.
(c) Write Taylor's Formula for $f(x, y)=e^{x y}$ at $\mathbf{a}=(0,0)$ with degree $p=4$.
\# $\mathbf{7}$ Suppose that $0<r<1$ and that $f: B_{1}(\mathbf{0}) \rightarrow \mathbf{R}$ is continuously differentiable. If there is an $\alpha>0$ such that $|f(\mathbf{x})| \leq\|\mathbf{x}\|^{\alpha}$ for all $\mathbf{x} \in B_{r}(\mathbf{0})$, prove that there exists an $M>0$ such that $|f(\mathbf{x})| \leq M\|\mathbf{x}\|$ for all $\mathbf{x} \in B_{r}(\mathbf{0})$.
\# 8 Suppose that V is open in \mathbf{R}^{n}, that $f: V \rightarrow \mathbf{R}$ is \mathcal{C}^{2} on V, and that $f_{x_{j}}(\mathbf{a})=0$ for some $\mathbf{a} \in H$ and all $j=1,2, \ldots, n$. Prove that if H is a compact convex subset of V, then there exists a constant $M>0$ such that

$$
|f(\mathbf{x})-f(\mathbf{a})| \leq M\|\mathbf{x}-\mathbf{a}\|^{2} \quad \forall \mathbf{x} \in H
$$

