Math 421 / Homework 11.5

- # 1 (a) Write out an expression in powers of (x + 1) and (y 1) for $f(x, y) = x^2 + xy + y^2$.
 - (b) Write Taylor's Formula for $f(x, y) = \sqrt{x} + \sqrt{y}$ at $\mathbf{a} = (1, 4)$ with degree p = 3.
 - (c) Write Taylor's Formula for $f(x, y) = e^{xy}$ at $\mathbf{a} = (0, 0)$ with degree p = 4.
- # 7 Suppose that 0 < r < 1 and that $f: B_1(\mathbf{0}) \to \mathbf{R}$ is continuously differentiable. If there is an $\alpha > 0$ such that $|f(\mathbf{x})| \leq ||\mathbf{x}||^{\alpha}$ for all $\mathbf{x} \in B_r(\mathbf{0})$, prove that there exists an M > 0 such that $|f(\mathbf{x})| \leq M ||\mathbf{x}||$ for all $\mathbf{x} \in B_r(\mathbf{0})$.
- # 8 Suppose that V is open in \mathbb{R}^n , that $f: V \to \mathbb{R}$ is \mathcal{C}^2 on V, and that $f_{x_j}(\mathbf{a}) = 0$ for some $\mathbf{a} \in H$ and all j = 1, 2, ..., n. Prove that if H is a compact convex subset of V, then there exists a constant M > 0 such that

$$|f(\mathbf{x}) - f(\mathbf{a})| \le M \|\mathbf{x} - \mathbf{a}\|^2 \quad \forall \mathbf{x} \in H.$$