Math 421 / Homework 11.4

$\# 1$ Let $F: \mathbf{R}^{3} \rightarrow \mathbf{R}$ and $f, g, h: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be C^{2} functions. If $w=F(x, y, z)$, where $x=f(p, q), y=g(p, q)$ and $z=h(p, q)$, find formulas for w_{p}, w_{q}, and $w_{p p}$.
\# 4 Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be twice differentiable. Prove that $u(x, y):=f(x y)$ satisfies

$$
x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=0
$$

and $v(x, y):=f(x-y)+g(x+y)$ satisfies the wave equation; that is,

$$
\frac{\partial^{2} v}{\partial x^{2}}-\frac{\partial^{2} v}{\partial y^{2}}=0
$$

\# 7 Let

$$
u(x, t)=\frac{e^{-x^{2} / 4 t}}{\sqrt{4 \pi t}}, \quad t>0, x \in \mathbf{R}
$$

(a) Prove that u satisfies the heat equation; that is, $u_{x x}-u_{t}=0$ for all $t>0$ and $x \in \mathbf{R}$.
(b) If $a>0$, prove that $u(x, t) \rightarrow 0$ as $t \rightarrow 0^{+}$uniformly for $x \in[a, \infty)$.

