Math 421 / Homework 11.3

\# 1 For each of the following, prove that \mathbf{f} and \mathbf{g} are differentiable on their domains, and find formulas for $D(\mathbf{f}+\mathbf{g})(\mathbf{x})$ and $D(\mathbf{f} \cdot \mathbf{g})(\mathbf{x})$.
(a)

$$
\mathbf{f}(x, y)=x-y, \quad \mathbf{g}(x, y)=x^{2}+y^{2}
$$

(d)

$$
\mathbf{f}(x, y, z)=(y, x-z), \quad \mathbf{g}(x, y, z)=\left(x y z, y^{2}\right)
$$

\#2(a) Find an equation of the tangent plane to $z=x^{2}+y^{2}$ at $\mathbf{c}=(1,-1,2)$.
\# 4 Let \mathcal{K} be the cone given by $z=\sqrt{x^{2}+y^{2}}$.
(a) Find an equation of each plane tangent to \mathcal{K} which is perpendicular to the plane $x+z=5$.
(b) Find an equation of each plane tangent to \mathcal{K} which is parallel to the plane $x-y+z=1$.
\# 6 Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at \mathbf{a} and $f(\mathbf{a}) \neq 0$.
(a) Show that for $\|\mathbf{h}\|$ sufficiently small, $f(\mathbf{a}+\mathbf{h}) \neq 0$.
(b) Prove that $D f(\mathbf{a})(\mathbf{h}) /\|\mathbf{h}\|$ is bounded for all $\mathbf{h} \in \mathbf{R}^{n} \backslash\{0\}$.
(c) If $T:=-D f(\mathbf{a}) / f^{2}(\mathbf{a})$, show that

$$
\begin{aligned}
\frac{1}{f(\mathbf{a}+\mathbf{h})}-\frac{1}{f(\mathbf{a})}-T(\mathbf{h})= & \frac{f(\mathbf{a})-f(\mathbf{a}+\mathbf{h})+D f(\mathbf{a})(\mathbf{h})}{f(\mathbf{a}) f(\mathbf{a}+\mathbf{h})} \\
& +\frac{(f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})) D f(\mathbf{a})(\mathbf{h})}{f^{2}(\mathbf{a}) f(\mathbf{a}+\mathbf{h})}
\end{aligned}
$$

for $\|\mathbf{h}\|$ sufficiently small.
(d) Prove that $1 / f(\mathbf{x})$ is differentiable at $\mathbf{x}=\mathbf{a}$ and

$$
D\left(\frac{1}{f}\right)(\mathbf{a})=-\frac{D f(\mathbf{a})}{f^{2}(\mathbf{a})}
$$

(e) Prove that if f and g are real-valued vector functions which are differentiable at some \mathbf{a}, and if $f(\mathbf{a}) \neq 0$, then

$$
D\left(\frac{g}{f}\right)(\mathbf{a})=\frac{f(\mathbf{a}) D g(\mathbf{a})-g(\mathbf{a}) D f(\mathbf{a})}{f^{2}(\mathbf{a})}
$$

