Math 421 / Homework 11.2

\# 3 Prove that $f(x, y)=\sqrt{|x y|}$ is not differentiable at $(0,0)$.
\# 5 Prove that

$$
f(x, y)= \begin{cases}\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{\alpha}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is differentiable on \mathbf{R}^{2} for all $\alpha<3 / 2$.
\# 7 Prove that

$$
f(x, y)= \begin{cases}\frac{x^{3}-x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is continuous on \mathbf{R}^{2} and has first-order partial derivatives everywhere on \mathbf{R}^{2}, but f is not differentiable at $(0,0)$.
\# 9 Let $r>0, f: B_{r}(\mathbf{0}) \rightarrow \mathbf{R}$, where $B_{r}(\mathbf{0})$ is an open ball centered at $\mathbf{0}$ in \mathbf{R}^{n}, and suppose that there exists an $\alpha>1$ such that $|f(\mathbf{x})| \leq\|\mathbf{x}\|^{\alpha}$ for all $\mathbf{x} \in B_{r}(\mathbf{0})$. Prove that f is differentiable at $\mathbf{0}$. What happens to this result when $\alpha=1$?

