Math 421 / Homework 11.2

3 Prove that $f(x,y) = \sqrt{|xy|}$ is not differentiable at (0,0).

5 Prove that

$$f(x,y) = \begin{cases} \frac{x^4 + y^4}{(x^2 + y^2)^{\alpha}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

is differentiable on \mathbf{R}^2 for all $\alpha < 3/2$.

7 Prove that

$$f(x,y) = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

is continuous on \mathbb{R}^2 and has first-order partial derivatives everywhere on \mathbb{R}^2 , but f is not differentiable at (0,0).

9 Let r > 0, $f: B_r(\mathbf{0}) \to \mathbf{R}$, where $B_r(\mathbf{0})$ is an open ball centered at **0** in \mathbf{R}^n , and suppose that there exists an $\alpha > 1$ such that $|f(\mathbf{x})| \le ||\mathbf{x}||^{\alpha}$ for all $\mathbf{x} \in B_r(\mathbf{0})$. Prove that f is differentiable at **0**. What happens to this result when $\alpha = 1$?