Math 421 / Homework 11.1

\# 2 For each of the following functions, compute f_{x} and determine where it is continuous.
(a)

$$
f(x, y)= \begin{cases}\frac{x^{4}+y^{4}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(b)

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{\sqrt[3]{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

\# 4 Suppose that $H=[a, b] \times[c, d]$ is a rectangle, that $f: H \rightarrow \mathbf{R}$ is continuous, and that $g:[a, b] \rightarrow \mathbf{R}$ is integrable. Prove that

$$
F(y)=\int_{a}^{b} g(x) f(x, y) d x
$$

is uniformly continuous on $[c, d]$.
\# 5 Evaluate the following expressions.
(a)

$$
\lim _{y \rightarrow 0} \int_{0}^{1} e^{x^{3} y^{2}+x} d x
$$

(b)

$$
\frac{d}{d y} \int_{0}^{1} \sin \left(e^{x} y-y^{3}+\pi-e^{x}\right) d x \quad y=1
$$

(c)

$$
\frac{\partial}{\partial x} \int_{1}^{3} \sqrt{x^{3}+y^{3}+z^{3}-2} d z \quad \text { at }(x, y)=(1,1)
$$

