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NUMERICAL SIMULATION OF SUBCOOLED NUCLEATE
BOILING BY COUPLING LEVEL-SET METHOD WITH
MOVING-MESH METHOD
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Aerospace Engineering Department, University of California, Los Angeles,
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Jianliang Qian
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A new numerical procedure coupling the level-set method with the moving-mesh method to

simulate subcooled nucleate pool boiling is proposed. Numerical test problems have vali-

dated this new method. The simulation of bubble dynamics during nucleate boiling under

liquid subcooling shows that this novel adaptive method is more accurate in determining

interfacial heat transfer than a computational method based on uniform grids with the same

number of mesh points.

1. INTRODUCTION

Nucleate boiling is a liquid–vapor phase-change process associated with bubble
formation. Subcooled nucleate pool boiling exists when the bulk temperature in the
liquid pool is less than the saturation temperature of the liquid at the given system
pressure, and the temperature of the heating surface exceeds a nucleation tempera-
ture which is higher than the saturation temperature. As it is a very efficient mode
of heat transfer, during the last few decades major efforts have been made to develop
numerical techniques to model this phase-change process. Lee and Nydahl [1] mod-
eled a bubble as consisting of a wedge-shaped microlayer and a hemisphere. Mei et al.
[2] adopted two empirically determined constants to numerically model the growth
rate of vapor bubbles in saturated heterogeneous boiling. Welch [3] presented a
finite-volume method to capture the interface and simulate the hydrodynamics, in
which transient conduction in the solid was also included. Yoon et al. [4] presented
a mesh-free numerical method to solve the Navier-Stokes equations and the energy
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equation; in their work, the interface was accurately traced by following the motion
of computational points. In the studies cited above, several assumptions were made,
such as bubbles having a hemispherical or spherical shape, uniform temperature
around bubbles, or neglect of heat transfer from microlayer. Son et al. [5] presented
a bubble-growth model for an isolated bubble based on the level-set method. This

NOMENCLATURE

A dispersion constant

cp specific heat at constant pressure

g! gravity vector

G monitor function

h grid spacing for the macro region

hev evaporative heat transfer coefficient

hfg latent heat of evaporation

H step function

J Jacobian of transformation

Ja Jacob number (=cpl DT=hfg)
k thermal conductivity

l0 characteristic length

m! mass flux vector

M molecular weight

Nu Nusselt number (=ql0=kl DT)

p pressure

Pe Peclet number (=qlcplu0l0=kl )

q heat flux

r radial coordinate
_rr mesh velocity in r direction

R radius of computational domain or

bubble
�RR universal gas constant

R0 radius of dry region beneath a bubble

R1 radial location of the interface at

y ¼ h=2

Re Reynolds number (=qlu0l0=ml)

t time

t0 characteristic time

T temperature

DT temperature difference

u! velocity vector, (u, v)

u!int interfacial velocity vector

ûu contravariant velocity normal to

g line

u0 characteristic velocity

U flow rate normal to g line

v̂v contravariant velocity normal to

n line

V flow rate normal to n line

Vmicro rate of vapor volume production

from the microlayer

DVmicro vapor-side control volume

w weight function in monitor function

We Weber number ðqlu20l0=rÞ

y vertical coordinate
_yy mesh velocity in y direction

Y height of computational domain

a thermal diffusivity

bT coefficient of thermal expansion

d liquid-film thickness

d0 nonevaporating liquid-film thickness

dt thermal-layer thickness

f similarity variable

g curvilinear coordinate

g0 coordinate in computational domain

h dimensionless temperature

h01 a constant

j interfacial curvature

m dynamic viscosity

vl liquid kinematic viscosity

n curvilinear coordinate

n0 coordinate in computational domain

q density

r surface tension

s artificial time

/ level-set function

u contact angle

w general dependent variable

Xp physical domain

Subscripts

c at the center of control volume

e at the edge of control volume

int interface

l liquid

sat saturation

sub subcooling

sup superheat

v vapor

w wall

g partial differentiation with respect

to g

n partial differentiation with respect

to n

Superscripts

n time step n

nþ 1 time step nþ 1
� intermediate value
�� intermediate value
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method was previously used by Sussman et al. [6] to solve for an adiabatic incom-
pressible two-phase flow. The level-set model as further developed by Son et al. [5]
offers many advantages over previously published models: it takes care of the initial
conditions automatically, it can be used for both saturated and subcooled boiling,
and it gives the distribution of the wall heat flux, the microlayer contribution, and
the interface heat transfer. In this work we extend this model to numerical simulation
of subcooled nucleate boiling.

Since the introduction of the level-set method (Osher and Sethian [7]), it has
became a popular method for tracking interfaces, owing to its automatic handling
of topological changes and easy implementation in comparison to other methods
such as surface-fitted grid methods and volume-of-fluid (VOF) methods.

Numerical investigation for two-phase problems requires extremely fine
meshes over the interface region to capture the process dynamics accurately. One
major goal of this study is to adopt a fine mesh to resolve the temperature gradient
around the bubble interface during nucleate boiling in subcooled liquid and adopt
coarser grids in regions away from the vapor–liquid interface. In contrast, using a
uniformly refined mesh in the entire domain becomes computationally expensive.
Thus an adaptive computational mesh is expected to increase the accuracy of inter-
facial heat transfer and decrease the cost of computation in comparison to using a
uniform mesh.

Depending on the mesh geometry, in general, there are two types of meshes:
Cartesian and nonorthogonal grids. The advantage of Cartesian grid methods with
local refinement is in the simplification of the grid-generation process so that a new
mesh is obtained by adding or removing points to achieve a desired level of accuracy.
Rectangle-based adaptive mesh refinement methods (Berger and Oliger [8], Sussman
[9], Qian [10]) and quad=octree-based methods (Khokhlov [11], Street [12], Cecil,
Osher and Qian [13]) belong to the class of Cartesian-mesh-based adaptive methods.
However, these methods require sophisticated data structures to efficiently manage
the set of locally refined Cartesian cells and their associated data and neighbor con-
nections. As a result, the complicated data structure can pose difficulties in
implementation.

The moving-mesh methods (MMM) and adaptive mesh redistribution (AMR)
methods are usually based on nonorthogonal grids. Moving-mesh methods relocate
a fixed number of nodes with fixed connectivity within the computational domain so
as to increase numerical accuracy. During the redistribution process, grid orthogon-
ality is not enforced. One of the frequently used procedures in generating meshes in
moving-mesh methods is the variational method. This method generates meshes by
minimizing a functional that involves various properties of physical solutions and
computational meshes, such as grid smoothness, orthogonality and volume vari-
ation, etc., and transforming the solutions between the physical domain and the
computational domain. As a result, the mesh evolves with the physical solution
and maintains high adaptivity as the solution evolves. The key to moving-mesh adap-
tivity is using a proper monitor function. By using an appropriate monitor function
Tang et al. [14] produced satisfactory mesh concentration for solving Hamilton-Jacobi
equations. Ceniceros and Hou [15] improved and simplified the mesh-generation
procedure proposed by Huang and Russell [16], and successfully applied it to
the numerical simulation of Boussinesq flows.
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In numerical simulations, the velocity components normal to the control-
volume faces are usually used as the dependent variables. However, nonorthogonal
meshes used in moving-mesh methods make it necessary to choose Cartesian, covari-
ant, and contravariant velocity components as dependent variables. Nevertheless,
the use of nonorthogonal curvilinear grids provides more flexibility with regard to
the distribution of grid points. The use of Cartesian velocity components as primary
dependent variables has the advantage that the governing equations remain in a rela-
tively simple form. Moreover, covariant and contravariant components appear to be
the perfect choices because of their relationship with grid lines. The discretizations
for the covariant and contravariant velocity components are obtained by an
algebraic manipulation of the corresponding equations for the Cartesian velocity
components. The use of covariant or contravariant components results in extra
source terms and more complicated equations. Karki and Patankar [17] presented
a method using a staggered grid and covariant velocity components as primary
variables. Yue et al. [18] coupled the incompressible Navier-Stokes system with a
level-set function in curvilinear coordinates on a fixed grid which is nonuniform
but orthogonal. Son and Dhir [19] adopted contravariant velocity components as
dependent variables in curvilinear coordinates on a moving grid for film boiling.
Their study provides the essential outline for the present project. In order to capture
the temperature gradient accurately around the evolving bubble interface, we couple
the level-set method with the moving-mesh method to carry out numerical simula-
tions of bubble growth in subcooled nucleate boiling.

2. NUMERICAL FORMULATION

2.1. Model Description

To analyze the growth of a single bubble in subcooled nucleate boiling, we
extend the numerical model originally developed by Son et al. [5]. In that model,
the computational domain is divided into two parts, a micro region and a macro
region, as shown in Figure 1. The micro region is a thin film that lies underneath
the bubble, whereas the macro region consists of the bubble and the liquid surround-
ing the bubble. Numerical simulations of fluid flow and heat transfer are carried out
for a time-dependent system in both the micro and macro regions. The computed
shapes of the interface in the micro region and the macro region are matched at
the outer edge of the micro layer for a given contact angle. In the numerical analysis,
a level-set function is solved to represent the macro region.

2.2. Assumptions

The assumptions in this study are the following:

The process is two-dimensional and axisymmetric.
The flows are laminar.
The wall temperature remains constant.
The thermodynamic properties of the individual phases are assumed to be insensitive
to small changes in temperature and pressure, except for surface tension.

538 J. WU ET AL.
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2.3. Thermal and Physical Properties

The thermal and physical properties used in the computation are listed in
Table 1. All properties are evaluated of water at atmospheric pressure and 100�C.

2.4. Governing Equations in the Macro Region

To numerically analyze the macro region, we use the level-set formulation
developed by Son et al. [5] for nucleate boiling of pure liquid. The interface separat-
ing the two phases is captured by solving the following equation for the level-set
function /:

q/

qt
¼ �uint � r/ ð1Þ

Figure 1. Macro and micro regions in numerical simulation.

SIMULATION OF SUBCOOLED NUCLEATE BOILING 539
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where

uint ¼ uþm

q
ð2Þ

A reinitialization equation is solved until steady state to ensure that jr/j ¼ 1:

q/

qt
¼ signð/0Þð1� jr/jÞ ð3Þ

In the above equation, /0 is the solution of Eq. (1). The material properties are
assumed to be constant in the individual phases, except near the interface and in
a thin region around the interface. To describe such an interface we define the
Heaviside function, H, as follows:

H ¼ 1 if/ � þ1:5 h

¼ 0 if/ � �1:5 h

¼ 0:5þ /=ð3hÞ þ sin½2p/=ð3hÞ�=ð2pÞ if j/j � 1:5 h ð4Þ

where h is equal to the grid spacing on a uniform grid, and H remains 1 in the liquid
phase and 0 in the vapor phase. However, it is smoothed over an interval of 3h, so
that the material properties change continuously at the interface. The properties are
defined as follows:

q ¼ qv þ ðql � qvÞH ð5Þ

m�1 ¼ m�1
v þ ðm�1

l � m�1
v ÞH ð6Þ

k�1 ¼ k�1
l H ð7Þ

where q, m, and k denote density, shear viscosity, and the thermal conductivity,
respectively. The subscripts v and l represent the vapor and fluid states, respectively.
Equation (7) is consistent with the assumption that the vapor temperature remains
constant at Tsat.

Table 1. Thermal and physical properties

Property Unit Liquid Vapor

q kg=m3 958 0.598

cp kJ=kgK 4.212 2.02

k W=mK 0.68 0.0248

m m2=s 2.85� 10�4 1.2� 10�5

hfg kJ=kg 2,257

Tsat K 373.15

b K�1 7.5� 10�4

r N=m 0.0589

540 J. WU ET AL.
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The interfacial curvature is expressed in terms of the level-set function as
follows:

j ¼ r � r/

jr/j ð8Þ

Next, we present the governing equations of continuity, momentum, and energy
for the macro region.

qq

qt
þr � ðquÞ ¼ 0 ð9Þ

q
qu

@t
þ u � ru

� �

¼ �rpþ qg� qbTðT � TsatÞ g� rjrH

þr � mruþr � mruT ð10Þ

qcpl
qT

qt
þ u � rT

� �

¼ r � krT for H > 0

T ¼ TsatðpvÞ for H ¼ 0 ð11Þ
The vapor in the bubble was assumed to remain at the saturation temperature.

As such, the energy equation in the vapor is not solved. Since there is no temperature
gradient along the interface, no Marangoni flow is considered in this work.

The mass conservation equation, Eq. (9), can be rewritten as

r � u ¼ m

q2
� rqþ _VVmicro ¼ krT

hfgq2
� rqþ _VVmicro ð12Þ

where _VVmicro is the volume expansion attributed to the heat transfer from the micro-
layer, which is

_VVmicro ¼
Z R1

R0

klðTw � TintÞ
qvhfgdDVmicro

r dr ð13Þ

DVmicro is a vapor-side control volume near the micro region. m is the water-
evaporation-rate vector, which is defined as (see Son et al. [5] for details)

m ¼ qðuint � uÞ ¼ qlðuint � ulÞ ¼ qvðuint � uvÞ ð14Þ

Also,

m ¼ krT

hfg
ð15Þ

Equations (12), (10), and (11) are nondimensionalized using the characteristic
length, time, and velocity scales l0, t0, and u0, respectively.

l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

gðql � qvÞ

r

ð16Þ

SIMULATION OF SUBCOOLED NUCLEATE BOILING 541
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u0 ¼
ffiffiffiffiffiffi

gl0
p

¼ rg

ðql � qvÞ

� �1=4

ð17Þ

t0 ¼
l0

u0
¼ r

g3ðql � qvÞ

� �1=4

ð18Þ

The temperature is nondimensionalized such that the wall temperature is 1 and
the subcooled liquid temperature is 0, i.e.,

h ¼ T � Tl

Tw � Tl

ð19Þ

The governing equations (12), (10), and (11) are solved throughout the domain to
obtain the velocity, temperature, and pressure in each cell. The detailed computational
framework is discussed in a later section.

2.5. Governing Equations in the Micro Region

The micro region is illustrated in Figure 1. The thickness of the liquid layer
varies from a couple of molecules to a few micrometers near the end, where it joins
with the macro region. Lay and Dhir [20] have modeled and solved numerically for
the shape of the microlayer underneath a bubble using the lubrication theory. In
carrying out the analysis, d is taken to be the thickness of the microlayer measured
from the wall, and r is the radial coordinate. The mass conservation, momentum,
and energy equations in the microlayer are given as

q

qlhfg
¼ � 1

r

q

qr

Z d

o

rul dy ð20Þ

qpl

qr
¼ ml

q2ul

qy2
ð21Þ

q ¼ klðTw � TintÞ
d

¼ hev Tint � Tv þ
ðpl � pvÞTv

qlhfg

� �

ð22Þ

where Tw is the wall temperature, Tint is the interface temperature, Tv is the vapor
temperature, pv is the vapor pressure, and hev is the evaporation heat transfer coef-
ficient. The evaporation heat transfer coefficient is obtained from kinetic theory as

hev ¼
ð2M=p�RRTvÞ0:5qvh2fg

Tv

Tv ¼ TsatðpvÞ ð23Þ

The pressures in the vapor and liquid phases satisfy the following relation (Lay
and Dhir [20]):

pl ¼ pv � rj� A

d3
þ q2

qvh
2
fg

ð24Þ

542 J. WU ET AL.
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where r is a function of temperature and A is the dispersion constant in the disjoin-
ing pressure. In Eq. (24), the second term on the right-hand side accounts for the
capillary pressure, the third term for the disjoining pressure, and the last term for
the recoil pressure. The curvature of the interface is defined as

j ¼ 1

r

q

qr
r
qd

qr

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qd

@r

� �2
s

2

4

3

5 ð25Þ

The combination of the mass, momentum, and energy equations for the micro-
layer yields

d0000 ¼ f ðd; d0; d00; d000Þ ð26Þ

where 0 denotes q=qr.
The boundary conditions for the above equation are posed as follows:

At r ¼ R0ðinner radius of dry regionÞ;
d ¼ do d0 ¼ d000 ¼ 0 ð27Þ

where do is of the order of molecular size and can be obtained from Wayner [21] as
the junction of the evaporating and nonevaporating regions.

At r ¼ R1ðouter radius of dry regionÞ;

d ¼ h

2
d00 ¼ 0 ð28Þ

where h=2 is the vertical distance to the first computational node for the level-set
function /, on uniform grids from the wall. In implementing the above boundary
conditions, the radius R1 is determined from the solution of the macro region.
For a given dispersion constant, the microlayer formulation, Eq. (26), and R0 are
solved with the five boundary conditions [Eqs. (27) and (28)]. In this work an
apparent contact angle is defined as

tanu ¼ 0:5h

R1 � R0
ð29Þ

u is measurable experimentally and used as boundary condition in the level-set func-
tion. Equation (26) is integrated numerically using a Runge-Kutta method with a
separate code. An expression for the rate at which vapor is produced from the micro-
layer is shown in Eq. (13). Within moving meshes, the distance to the first computa-
tional node from the wall is no longer equal to h=2 on uniform grids. It also may
vary slightly from time to time. The above equations are still valid with the varying
distance, just as in the case of refined uniform grid sizes.

SIMULATION OF SUBCOOLED NUCLEATE BOILING 543
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2.6. The Moving Mesh Method

In the following we use the mesh-generation procedure given by Ceniceros and
Hou [15]. The mesh map from the computational domain to the physical domain is
generated by minimizing the following functional:

E½n0;g0� ¼ 1

2

Z

Xp

rn0TG�1rn0 þrg0TG�1rg0� �

dr dy ð30Þ

In the above, n
0
and g

0
are two coordinates in the computational domain, r and y are

the corresponding ones in the physical domain; G is a given symmetric positive defi-
nite matrix, the so-called monitor function; and Xp denotes the physical domain.
Some terms controlling mesh orthogonality and alignment are omitted in the above
equation. After interchanging the dependent and independent variables and making
the simplest choice for G (i.e., G ¼ wI, I is the identity matrix), we end up with the
following equations:

r � ðwrrÞ ¼ 0;r � ðwryÞ ¼ 0 ð31Þ

where w is a weight function to be chosen and r ¼ q=qn0; q=qg0ð ÞT .
A standard procedure to solve Eq. (31) is to use the pseudo-transient method

(Huang and Russell [16], Ceniceros and Hou [15]),

rs ¼ r � ðwrrÞ ð32Þ

ys ¼ r � ðwryÞ ð33Þ

where s is an artificial time. At t ¼ 0, using an initial guess we solve Eqs. (32) and
(33) by an iterative method up to a steady state and the resulting mesh is fit well with
the initial conditions. The details about the effectiveness of this mesh generator can
be found in Ceniceros and Hou [15]. However, after t ¼ 0, s is replaced by t, and
Eqs. (32) and (33) become the governing equations to generate the adaptive mesh
for the evolving interface.

2.7. Transformed Governing Equations in Curvilinear Coordinates

The following transformation formulas are used to obtain the equations in
curvilinear coordinates:

J ¼ rnyg � rgyn

wr ¼
1

J
ygwn � ynwg

� �

wy ¼
1

J
�rgwn þ rnwg

� �

wrr ¼
1

J
½J�1ðygÞ2wn�n � J�1ygynwg

� �

n
� J�1ynygwn

� �

g
þ J�1ðynÞ2wg

h i

g

� 	

wyy ¼
1

J
½J�1ðrgÞ2wn�n � J�1rgrnwg

� �

n
� J�1rnrgwn

� �

g
þ J�1ðrnÞ2wg

h i

g

� 	

ð34Þ

544 J. WU ET AL.
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The contravariant velocity components ûu and v̂v can be expressed in the form of
Cartesian components u and v as

ûu ¼ ygu� rgv

v̂v ¼ �ynuþ rnv

U ¼ rûu
dge

dgc

V ¼ rv̂v
dne
dnc

ð35Þ

where dne and dge are the edge sizes of the control volume in the n and g directions,
while dnc and dgc are the centerline sizes of the control volume in the n and g direc-
tions. The computation of mesh distribution shows that the difference of dn and dg

between neighboring grids becomes larger when the grids are farther away from the
interface. These terms are introduced to correct the effect of nonuniform grids.

Using the above equations and some algebraic manipulations, we obtain the
following transformed equations in curvilinear coordinates:

Un þ Vg ¼ rk

hfgq2J2

dge

dgc

Tnqn �
dge

dgc

ðrnrg þ ynygÞT1qg

�

� dne
dnc

ðrnrg þ ynygÞTgqn þ
dne
dnc

Tgqg

�

þ _VVmicro ð36Þ

qr J
qûu

qt

�

þ ygun½ðu� _rrÞyg � ðv� _yyÞrg�
dge

dgc

þ ygug½�ðu� _rrÞyn þ ðv� _yyÞrn�
dne
dnc

�rgvn½ðu� _rrÞyg � ðv� _yyÞrg�
dge

dgc

þ rgvg½ðu� _rrÞyn � ðv� _yyÞrn�
dne
dnc

	

¼ �rpn þ ðrnrg þ ynygÞrpg � rjrHn þ ðrnrg þ ynygÞrjrHg

� 2mJygu=rþ ½1� bTðT � TsatÞ�qgJrrg

þ yg
2rm dge

dgcJ
ðy2gun � ygynugÞ

� �

n

þ 2rm dne
dnc J

ðy2nug � ygynunÞ
� �

g

( )

þ yg � rm dge

dgcJ
ðygrgvn � ynrgvgÞ

� �

n

þ rm dne
dncJ

ðrnygvn � ynrnvgÞ
� �

g

( )

þ yg
rm dge

dgcJ
ðr2gun � rgrnugÞ

� �

n

þ rm dne
dncJ

ðr2nug � rgrnunÞ
� �

g

( )

� rg
rm dge

dgcJ
ðy2gvn � ygynvgÞ

� �

n

þ rm dne
dncJ

ðy2nvg � ygynvnÞ
� �

g

( )

� rg
2rm dge

dgcJ
ðr2gvn � rgrnvgÞ

� �

n

þ 2rm dne
dncJ

ðr2nvg � rgrnvnÞ
� �

g

( )

� rg � rm dge

dgcJ
ðrgygun � ygrnugÞ

� �

n

� rm dne
dncJ

ðynrnug � rgynunÞ
� �

g

( )

ð37Þ
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qr J
qv̂v

qt

�

� ynun½ðu� _rrÞyg � ðv� _yyÞrg�
dge

dgc

þ ynug½ðu� _rrÞyn � ðv� _yyÞrn�
dne
dnc

þ rnvn½ðu� _rrÞyg � ðv� _yyÞrg�
dge

dgc

þ rnug½�ðu� _rrÞyn þ ðv� _yyÞrn�
dne
dnc

	

¼ �rpg þ ðrnrg þ ynygÞrpn � rjrHg þ ðrnrg þ ynygÞrjrHn

þ 2mJynu=r� ½1� bTðT � TsatÞ�qgJrrn

� yn
2rm dge

dgcJ
ðy2gun � ygynugÞ

� �

n

þ 2rm dne
dncJ

ðy2nug � ygynunÞ
� �

g

( )

� yn � rm dge

dgcJ
ðygrgvn � ynrgvgÞ

� �

n

þ rm dne
dncJ

ðrnygvn � ynrnvgÞ
� �

g

( )

� yn
rm dge

dgcJ
ðr2gun � rgrnugÞ

� �

n

þ rm dne
dncJ

ðr2nug � rgrnunÞ
� �

g

( )

þ rn
rm dge

dgcJ
ðy2gvn � ygynvgÞ

� �

n

þ rm dne
dncJ

ðy2nvg � ygynvnÞ
� �

g

( )

þ rn
2rm dge

dgcJ
ðr2gvn � rgrnvgÞ

� �

n

þ 2rm dne
dncJ

ðr2nvg � rgrnvnÞ
� �

g

( )

þ rn � rm dge

dgcJ
ðrgygun � ygrnugÞ

� �

n

� rm dne
dncJ

ðynrnug � rgynunÞ
� �

g

( )

ð38Þ

qcqlr J
qT

qt
þTn ðu� _rrÞyg � ðv� _yyÞrg


 � dge

dgc

þTg �ðu� _rrÞyn þ ðv� _yyÞrn

 � dne

dnc

� 	

¼ rk dge

Jdgc

½Tn � ygyn þ rgrn
� �

Tg�
� 	

n

þ rk dne
Jdnc

½Tg � ygyn þ rgrn
� �

Tn�
� 	

g

ð39Þ

J
q/

qt
þ /n½ðuint � _rrÞyg � ðvint � _yyÞrg� þ /g½�ðuint � _rrÞyn þ ðvint � _yyÞrn� ¼ 0

uint ¼ uþ k

Jqhfg
ðygTn � ynTgÞ

vint ¼ vþ k

Jqhfg
ð�xgTn þ xnTgÞ ð40Þ

q/

qs
¼ signð/0Þ 1� J�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/n
2 þ /g

2 � 2ðynyg þ rnrgÞ/n/g

q

� �

ð41Þ
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 signð/0Þ ¼
2

p
tan�1 /0

1:5h

� �3

64

" #

ð42Þ

Here sign(/0) is motivated by Qian and Leung [22], and it works well in our
application.

3. THE COMPUTATIONAL FRAMEWORK

Taking advantage of the bubble symmetry, we need to compute only half of the
bubble. We use a staggered-grid finite-difference scheme. The scalar parameters are
defined at the centers of cells (i.e., centers of dnc and dgc) and velocity components
are stored at the edges of cells (i.e., ûu at the center of dge and v̂v at the center of dne).
To easily obtain the discretized forms of various quantities, both Cartesian velocity
components and contravariant ones are stored in memory. We use upwind differen-
cing for advection terms and central differencing for diffusion terms. A projection
method is used to solve velocities and pressure. Because the pressure computation
takes most of the computational time, we combine multigrid and conjugate gradient
methods so that the numerical solver for pressure converges in less than 10 iterations
under most circumstances, resulting in significant computational savings.

Overall, we have the following computational framework:

1. Initialize by solving the mesh equation to steady state.
The mesh equation can be discretized as,

rnþ1 � rn

Ds
¼ aDrnþ1 þr � ðwnrr nÞ � aDr n ð43Þ

ynþ1 � yn

Ds
¼ aDynþ1 þr � ðwnrynÞ � aDyn ð44Þ

where a ¼ maxðwnÞ. The superscript nþ 1 denotes the current time step, while the
superscript n denotes the previous time step. The function w is the key factor for
obtaining a satisfactory mesh. Since the interface is the region of interest, it is natural
to consider the level-set function /. Consequently, we consider two different w’s: one

is w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð/þ 0:5hÞ�1
q

and the other is w ¼ C1�j/=j/jmaxj, with C being a constant

and j/jmax being the maximum absolute level-set function along the n or g direction.
It also should be noted that the variations of other variables can be easily taken into
account in the adaptation process.
2. Update mesh.

Replacing Ds by Dt from the above equations, solve for one time step to evolve
the mesh in the forward direction.
3. Solve the level-set advection equation, reinitialize the level-set function, and

determine the properties.
The second-order ENO scheme is applied to discretize /n and /g. A few iter-

ation steps are used in the reinitialization procedure. We use the length scale of 3h to
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bridge the property difference through the interface with uniform grids. With
nonuniform grids, the mesh concentration around the interface yields the possibility
of narrowing this thickness, and this possibility deserves further investigation.
4. Solve the energy equation for temperature.

Upwind differencing is used for Tn and Tg. The diffusion terms of Tnn and Tgg

are implicitly discretized, and Tng and Tgn are continuously updated by the current
iteration until convergence.
5. Solve the momentum equation for velocity using the pressure at the previous time

step. To make the equations concise, define

LðwÞ ¼ rmdge

Jdgc

½wn�ðygynþ rgrnÞwg�
� 	

n

þ rmdne
Jdnc

½wg�ðygynþ rgrnÞwn�
� 	

g

ð45Þ

The following equations are computed for intermediate velocities ûu� and v̂v�:

qJr
ðûu� � ûunÞ

Dt
¼ �rpnn þ ðrnrg þ ynygÞrpng þ s1ðûunÞ þ Lðûu�Þ � LðûunÞ ð46Þ

qJr
ðv̂v� � v̂vnÞ

Dt
¼ �rpng þ ðrnrg þ ynygÞrpnn þ s2ðv̂vnÞ þ Lðv̂v�Þ � Lðv̂vnÞ ð47Þ

where s1ðûunÞ and s2ðv̂vnÞ represent the other terms from Eqs. (37) and (38), respectively.
6. Correct the velocities.

ûu�� ¼ ûu� þ Dt

qJ
½pnn � ðrnrg þ ynygÞpng� ð48Þ

v̂v�� ¼ v̂v� þ Dt

qJ
½png � ðrnrg þ ynygÞpnn� ð49Þ

7. Solve the following Poisson equation for pressure:

rDt dge

qJ dgc

pnþ1
n

h

�

� rnrg þ ynyg
� �

pnþ1
g

io

n
þ rDt dne

qJ dnc
pnþ1
g � rnrg þ ynyg

� �

pnþ1
n

h i

� 	

g

¼ �U��
n � V ��

g

þ rk

hfgq2J2

dge

dgc

Tnqn �
dge

dgc

ðrnrg þ ynygÞTnqg

�

� dne
dnc

rnrg þ ynyg
� �

Tgqn þ
dne
dnc

Tgqg

�

þ _VVmicro ð50Þ

Under the assumptions of constant wall temperature and constant contact
angle, _VVmicro is a function of the distance between the first computational nodes
and the wall. This function can be fit from data collected by varying that distance.
During each time step, the average distance of several first computational nodes
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at the interface region is used to retrieve the corresponding micro-layer heat transfer
from that function.
8. Correct the velocity.

ûunþ1 ¼ ûu�� � Dt

qJ
pnþ1
n � rnrg þ ynyg

� �

pnþ1
g

h i

ð51Þ

t̂tnþ1 ¼ t̂t�� � Dt

qJ
pnþ1
g � rnrg þ ynyg

� �

pnþ1
n

h i

ð52Þ

After this step, the continuity equation is ensured to be satisfied.
9. Go to Step 2 for the next time step.

3.1. Boundary Conditions

At the wall (y ¼ 0),

u ¼ 0 t ¼ 0
q/

qy
¼ � cosu T ¼ Tw ð53Þ

where the third boundary condition is accurate for the zero level-set function. The
boundary conditions away from the interface make no significant difference in terms
of interface location and property determination. For the sake of simplicity, the
boundary condition is applied along the wall.

At the top of the computational domain (y ¼ Y),

qu

qy
¼ 0

qt

qy
¼ 0

q/

qy
¼ 0 T ¼ Tl ð54Þ

At the planes of symmetry (r ¼ 0;R),

u ¼ 0
qt

qr
¼ 0

q/

qr
¼ 0

qT

qr
¼ 0 ð55Þ

3.2. Initial Conditions

Initially, the fluid velocity is set to be zero. The temperature profile is taken to
be linear in the natural-convection thermal boundary layer, and its thickness, dT , is
given by Kays and Crawford [23]:

dT ¼ 7:14
nlal

gbT DT

� �1=3

ð56Þ

4. NUMERICAL EXPERIMENTS

4.1. Bubbles Rising in a Liquid

To validate this moving-mesh method coupled with level-set functions, we
simulate bubbles rising in a quiescent liquid and compare the results to those given
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by Ryskin and Leal [24] and by Son [25]. Three cases with the same dimensionless
parameters as described by Son [25] are studied in this present work. The computa-
tional domain is moved at the same velocity as the bubble rising velocity in order
to prevent the bubble from moving out of the domain. The bubble radius R and
the characteristic velocity

ffiffiffiffiffiffi

gR
p

are used to scale the equations. The ratios of vapor
and liquid properties are qt=ql ¼ 10�3 and mt=ml ¼ 10�2. Other dimensionless
parameters are defined as

Nf ¼
qlR

ffiffiffiffiffiffi

gR
p

ml
E0 ¼

qlgR
2

r
ð57Þ

The computational domain is 6.4R� 12.8R. The boundary conditions are

At ðy ¼ 0Þ;

u ¼ 0
qt

qy
¼ 0

q/

qy
¼ 0 p ¼ 0 ð58Þ

At ðy ¼ YÞ;

u ¼ 0 t ¼ 0
q/

qy
¼ 0

qp

qy
¼ 0 ð59Þ

At the planes of symmetry ðr ¼ 0;RÞ;

u ¼ 0
qt

qr
¼ 0

q/

qr
¼ 0

qp

qr
¼ 0 ð60Þ

The computational results are shown in Table 2. The computation is carried out on
64� 128 and 96� 192 nonuniform grids until the terminal velocity is reached; the
bubble rising velocities from 96� 192 nonuniform grids are shown in Figure 2.
The relative differences in all cases are less than 4.1%.

In this test problem, the monitor function is taken to be w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð/þ 0:5hÞ�1
q

.
The bubble shapes and grid distributions at steady state for the three cases are shown
in Figure 3. The method can capture the interface deformation and keep the interface
smooth, as depicted in Figure 3.

Table 2. Comparison of the dimensionless terminal velocities of rising bubbles

Present study Relative difference (%)

Case Nf Eo Ryskin and Leal [24] 64� 128 96� 192 64� 128 96� 192

(a) 1.34 14.3 0.374 0.378 0.367 1.1 1.8

(b) 5.87 4.13 0.852 0.824 0.833 3.3 2.2

(c) 27.6 0.61 1.814 1.740 1.766 4.1 2.6
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4.2. Spherically Growing Bubbles in a Superheated Liquid

This phase-change problem with an analytical solution was described by
Son [26] and is used to test the capability of our method to handle heat transfer
processes. A bubble embryo in an initially uniformly superheated liquid will keep
growing spherically under zero gravity conditions and without any other external
disturbance. In this case, the vapor is at the saturation temperature and its velocity
is zero. The dimensionless governing equations for temperature and velocity on the
liquid side can be written as

qh

qt
þ u

qh

qr
¼ 1

r2
q

qr

1

Pe
r2
qh

qr
ð61Þ

q

qt
r2u ¼ 0 ð62Þ

dimensionless parameters are defined as

Pe ¼ qlcplu0l0

kl
Ja ¼ cpl DT

hfg
Re ¼ qlu0l0

ml
We ¼ qlu

2
0l0

r

The boundary conditions at r ¼ R are derived from the conditions of the mass
continuity and energy balance at the interface:

h ¼ 0
dR

dt
¼ ql

qt

dR

dt
� u

� �

¼ ql
qt

Jasup
Pe

qh

qr
ð63Þ

Figure 2. Bubble velocities for three cases: (a) Nf ¼ 1.34, Eo ¼ 14.3; (b) Nf ¼ 5.87, Eo ¼ 4.13,

(c) Nf ¼ 27.6, Eo ¼ 0.61.
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Figure 3. Bubble shapes and grid distribution at the terminal velocities for three cases.

552 J. WU ET AL.



D
ow

nl
oa

de
d 

By
: [

D
hi

r, 
Vi

ja
y 

K.
] A

t: 
17

:0
3 

24
 A

pr
il 

20
07

 

Using a similarity variable f ¼ r=RðtÞ, we have an analytical solution to the
spherical bubble growth,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ql
qt

Jasup
Pe

h01t

s

ð64Þ

where h01 is obtained from the following equation:

Z 1

1

h1

f2
exp

ql
qt

Jasup h
0
1

1� f2

2
þ 1� qt

ql

� �

1� 1

f

� �

" #( )

df ¼ 1 ð65Þ

In this study, the dimensionless parameters using the properties of saturated
water at 1.013� 105Pa are given as

ql
qt

¼ 1; 603
ml
mt

¼ 23:5 Re ¼ 118:5 We ¼ 0:04 Pe ¼ 207:4

Jasup ¼ 1:12� 10�2 for DTsup ¼ 6�C Jasup ¼ 1:50� 10�2 for DTsup ¼ 8�C

The numerical computation is conducted on a quarter of the whole domain.
The characteristic scales of l0 ¼ 0.5mm and u0 ¼ 0.07m=s are used to nondimensio-
nalize the equations. The numerical computation of bubble radii as a function of
time are compared with the exact solution in Figure 4. It shows that in both cases
the uniform grids are not fine enough to resolve the bubble growth rates accurately.
Except at the initial stage of the computation, the results show good agreement
between the analytical growth rates and the numerical growth rates from nonuni-
form grids with the same number of mesh points as uniform grids. The advantage

Figure 4. Comparison of the simulated bubble growth with the analytical solutions.
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of the current adaptive method is quite obvious in this case. In this test case, we use
w ¼ C1�j/=j/jmaxj with C ¼ 80 based on 128� 128 mesh for Jasup ¼ 1.12� 10�2 and
192� 192 nonuniform grids with C ¼ 60 for Jasup ¼ 1.50� 10�2. Figure 5 presents
the grid distribution at t=t0 ¼ 0.19 for the case of Jasup ¼ 1.12� 10�2. Note that

Figure 5. Grid distribution: Jasup ¼ 1.12� 10� 2 at t=t0 ¼ 0.19.

Figure 6. Comparison of growth rates for various grid sizes under conditions of wall superheat ¼ 8�C,
liquid subcooling ¼ 1�C, contact angle ¼ 54�, pressure ¼ 1.013� 105 Pa.
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for the sake of clarity, only every alternate grid point is plotted. The interface is also
shown in Figure 5.

4.3. Subcooled Nucleate Boiling

A numerical simulation of single-bubble dynamics during subcooled nucleate
boiling for a wall superheat of 8�C, liquid subcooling of 1�C, contact angle of 54�,
and system pressure of 1.013� 105Pa is conducted with different grid sizes. The
growth rate of the bubble is adopted as the primary means of comparing the effect
of different parameters. The actual volume of the bubble is first computed; thereafter
it is converted into an equivalent diameter of a sphere.

Figure 6 shows the growth rate of the bubble with four different grid sizes. For
all the grids, the bubble detaches from the wall at a size which is smaller than its
maximum size. This bubble shrinkage near the point of departure is caused by the

Figure 7. Comparison of temperature profiles and velocity vectors between 192� 384 uniform (left) and

128� 256 nonuniform grids (right): (a) t ¼ 0.008 s; (b) t ¼ 0.024 s.
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negative total heat transfer to the bubble; i.e., condensation heat transfer is larger
than the sum of evaporation heat transfer around the bubble and from the micro-
layer, as described by Singh [27].

Figures 7 and 8 show the comparison between 192� 384 uniform and
128� 256 nonuniform grids of the calculated flow field and temperature field during
the bubble-growth process. They are almost identical. From the numerical simula-
tion, it can be seen that the growing bubble pushes out the liquid. The location
where the vapor–liquid interface contacts the wall is observed to move outward
and then inward as the bubble grows and departs. The highest heat transfer rate
occurs at the base of the bubble. The nonuniform velocity inside the bubble results
in a noticeable vortex. The isotherm that terminates at the bubble interface repre-
sents the saturation temperature. It distinguishes the area where evaporation takes

Figure 8. Comparison of temperature profiles and velocity vectors between 192� 384 uniform (left) and

128� 256 nonuniform grids (right): (a) t ¼ 0.040 s; (b) t ¼ 0.064 s.
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place from the area where condensation occurs. We can observe that the conden-
sation area dominates the evaporation area during most of the growth period.
The adaptive grid distribution near the interface is shown in Figure 9. Only every
alternate grid point is plotted, for clarity.

Due to the explicit treatment of the advection terms, the time step is chosen to
satisfy the CFL condition after the grid size is determined. The time step Dt is chosen

Figure 9. Evolving grid distribution: (a) t ¼ 0.008 s; (b) t ¼ 0.024 s.
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by decreasing it until no significant difference can be found in subsequent results.
Usually, dimensionless Dt is less than 2.0� 10�4.

These results show that the current adaptive method with a 128� 256 nonuni-
form mesh can achieve similar results as methods based on a 192� 384 uniform
mesh. The results of this test case do not imply that in other situations the current
method can produce the same results as a method based on 1.5 times uniform grids.
Another case with high subcooling is studied next to evaluate the effectiveness of this
new method.

Figure 10 shows the growth rate of the bubble for the following conditions:
wall superheat ¼ 8�C, liquid subcooling ¼ 7�C, contact angle ¼ 54�, pressure ¼
1.013� 105Pa. In this study, the same thickness is used to bridge the property differ-
ence across the bubble interface with w ¼ C1�j/=j/jmaxj and C ¼ 10, 20 is adopted to
distribute grids in nonuniform cases. Computations are performed for both uniform
and nonuniform grids. In all cases, the bubble grows to a maximum size and then
begins to shrink. This shrinkage is due to the large condensation heat transfer that
occurs at the top of the bubble. As a result, the bubble never achieves the bubble
departure size. Eventually, a balance is achieved in evaporation and condensation
rate, and the bubble remains attached to the heating surface. Figure 10 shows that
as the grid size decreases, the temperature gradients near the interface are more accu-
rately captured, especially in the regions where condensation occurs. As a result,
finer meshes give rise to a smaller bubble. After 0.15 s, the differences between
bubble diameters calculated with different grids, except for the case with 64� 128
uniform grids, become insignificant. This case shows that the current method is quite
effective for numerical simulations with higher subcooling. The computation results
from nonuniform grids with C ¼ 10 and 20 are similar.

In Figure 11, the evaporation heat flux is indicated by the concentration
of isotherms at the base of the bubble. Vapor flowing upward from the base

Figure 10. Comparison of growth rates for various grid sizes under conditions of wall superheat ¼ 8�C,
liquid subcooling ¼ 7�C, contact angle ¼ 54�, pressure ¼ 1.013� 105 Pa.
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condenses over most of the interface. The liquid that has just condensed around the
interface flows downward toward the wall and thins down the thermal layer near
the base of the bubble. This in turn leads to saddle points in the isotherms. The
isotherm distribution is quite different from the case for low subcooling as shown
in Figures 7 and 8.

Figure 12a shows the features of the grid distribution. The difference between
the neighboring grids around the interface is small and smooth, which is important
in mesh generation. Meanwhile, high adaptivity is maintained, which can be seen
from the ratio of the maximum to the minimum area of cells shown in Figure 12b.

The other topics that need to be addressed are the memory usage and computa-
tional time of the present method. To make discretization handy, the coordinates of

Figure 11. Temperature profiles and velocity vectors: (a) t ¼ 0.0002 s; (b) t ¼ 0.0400 s; (c) t ¼ 0.1438 s; (d)

t ¼ 0.2493 s.
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the centers of each cell and its corners are kept in memory. In addition to this
geometry information, the Cartesian velocity components at the centers of dne
and dge are also stored. The memory usage is O(N2) in the current two-dimensional
code, where N is the number of mesh points along one of the spatial directions. In
terms of the number of variables stored in memory, for a fixed N the present method
is approximately 2.5 times more expensive than that using uniform grids. However,

Figure 12. (a) Grid distribution at t ¼ 0.2493 s. (b) Ratio of maximum to minimum areas of grids.
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we have significant reduction in computational time. Table 3 shows the comparison
of CPU times for various grid sizes. All the computations were carried out on a 3.20-
GHz PC computer using double precision. For uniform grids, the CPU times will be
12.5 and 44.5 times more expensive if the grid number is doubled and tripled,
respectively. For nonuniform grids, C can affect the computational time. The
CPU times in both cases for nonuniform grids with C ¼ 10, 20 have the same
maginitude as that for the 128� 256 uniform grids. Although a more restricted time
step is used, the total CPU times for C ¼ 10, 20 are 24% and 30% of the CPU time
for 192� 384 uniform grids, respectively.

To simulate nucleate boiling under microgravity conditions, we can see that the
characteristic length scale l0 based on the balance between gravity and surface
tension forces as given in Eq. (16) will be g�0.5 times the corresponding value
under Earth-normal gravity conditions. This length will result in a very coarse mesh
distribution for a reasonable CPU time when a uniform grid is used. In turn, this
may lead to inaccuracy in results. Thus, in order to accurately capture the tempera-
ture gradient around the bubble interface with a uniform grid, a large number of
grids will be required. Alternatively, the current adaptive mesh can be used very
advantageously to cluster the nodes around the bubble interface. As a result, signifi-
cant savings in computational time can be achieved.

5. CONCLUSIONS

A numerical procedure coupling the level-set function with the moving-mesh
method has been developed that enables study of nucleate pool boiling under strong
temperature gradients near the interface.

The test problems show that the current method can be more accurate than its
counterpart with uniform grid structure. The simulation of bubble dynamics under
subcooled boiling conditions shows that the new adaptive method can achieve the
same accuracy as the methods based on uniform grids with many more mesh points.
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