
Fast Huygens’ sweeping methods for multiarrival Green’s functions
of Helmholtz equations in the high-frequency regime

Jianliang Qian1, Songting Luo2, and Robert Burridge3

ABSTRACT

Multiarrival Green’s functions are essential in seismic
modeling, migration, and inversion. Huygens-Kirchhoff
(HK) integrals provide a bridge to integrate locally valid
first-arrival Green’s functions into a globally valid multiar-
rival Green’s function. We have designed robust and accu-
rate finite-difference methods to compute first-arrival
traveltimes and amplitudes, so that first-arrival Green’s func-
tions can be constructed rapidly. We adapted a fast butterfly
algorithm to evaluate discretized HK integrals. The resulting
fast Huygens’ sweeping method has the following unique
features: (1) it precomputes a set of local traveltime and am-
plitude tables, (2) it automatically takes care of caustics,
(3) it constructs Green’s functions of the Helmholtz equation
for arbitrary frequencies and for many point sources, and
(4) for a fixed number of points per wavelength, it constructs
each Green’s function in nearly optimal complexity
OðN log NÞ in terms of the total number of mesh points
N, where the prefactor of the complexity only depends
on the specified accuracy, and is independent of the fre-
quency. The 2D and 3D examples revealed the performance
of the method.

INTRODUCTION

Green’s functions for the Helmholtz equation in inhomogeneous
media are essential for seismic modeling, migration, and inversion.
However, due to the highly oscillatory nature of wavefields, which
induces the so-called dispersion (pollution) error (Babuska and
Sauter, 2000), it is very costly and difficult for finite-difference
or finite-element methods to directly solve the equation to high ac-
curacy in the high-frequency regime; consequently, some approxi-

mate methods, such as the one-way wave equation and geometric-
optics (GO)-based asymptotics are frequently appealed.
To construct Green’s functions for the Helmholtz equation using

GO, one popular approach is finite-differencing eikonal equations
to compute first-arrival traveltimes (Vidale, 1990; van Trier and
Symes, 1991; Qin et al., 1992; Schneider et al., 1992; Hole and
Zelt, 1995; Schneider, 1995; Pica, 1997; Kim and Cook, 1999; Se-
thian and Popovici, 1999; Franklin and Harris, 2001; Qian and
Symes, 2002a, 2002b; Tsai et al., 2003; Kao et al., 2004; Zhang
et al., 2005, 2006; Zhao, 2005; Leung and Qian, 2006; Qian et al.,
2007a, 2007b; Fomel et al., 2009; Alkhalifah and Fomel, 2010; Be-
namou et al., 2010; Serna and Qian, 2010; Luo and Qian, 2011,
2012; Luo et al., 2012). However, in Geoltrain and Brac (1993)
and Gray and May (1994), prestack Kirchhoff depth migration us-
ing first-arrival Green’s functions are questioned in imaging com-
plex structures that host multiple transmitted arrivals because the
first-arrival traveltimes in complex media usually do not correspond
to the most energetic traveltimes crucial for imaging complex struc-
tures (Nichols, 1994); furthermore, Geoltrain and Brac (1993) sug-
gest using dynamically correct multiarrival Green’s functions, in
which multivalued eikonals and amplitudes are correctly accounted
for. Consequently, Operto et al. (2000) extend the asymptotic ray-
Born migration/inversion originally designed to process one single
arrival to the case of multiple arrivals using ray theory-based
dynamically correct multiarrival Green’s functions, so as to account
for the cross contributions of all the source-receiver raypaths; nat-
urally, it is nontrivial to construct such ray-theory Green’s functions
because they have to explicitly keep track of caustics, ray branches,
and the Keller-Maslov index, so that multivalued phases and
amplitudes are correctly taken into consideration (Červený
et al., 1977; Chapman, 1985). As an alternative, Gaussian beams
are able to take care of multiple arrivals and caustics automatically
in ray theory asymptotics for Green’s functions at the cost of ex-
pensive beam summations (Červený et al., 1982; Popov, 1982; Ral-
ston, 1983; Hill, 1990; Albertin et al., 2004; Gray, 2005; Leung
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et al., 2007; Tanushev et al., 2007; Hu and Stoffa, 2009; Leung and
Qian, 2010; Qian and Ying, 2010a, 2010b; Bao et al., 2014).
On the other hand, Bevc (1997) proposes a semirecursive Kirch-

hoff depth migration method to image complex structures by
combining wave equation datuming (Berryhill, 1979) and first
arrival-based Kirchhoff migration (Geoltrain and Brac, 1993). Bevc
(1997) succeeds in obtaining accurate images of complex structures
by breaking up the structure into small depth regions, so that trav-
eltime fields emanated from point sources located in the small depth
regions do not develop the adverse effects of caustics, head waves,
and multiple arrivals; correspondingly, first-arrival Green’s func-
tions are physically correct in each small depth region, so that first-
arrival Kirchhoff migrations are accurate in imaging the correspond-
ing small depth region, where Berryhill’s (1979) wave equation da-
tuming technique is used to prepare the data for the Kirchhoff
migration in each small depth region (see Li and Fomel [2013]
for a recent implementation of this migration method). In fact,
Bevc’s (1997) approach amounts to constructing a kinematically
correct multiarrival Green’s function implicitly and indirectly using
first arrivals of Huygens’ secondary sources. Given that first arrivals
are easy to compute by finite-differencing eikonal equations, a natu-
ral question is, can we construct dynamically correct multiarrival
Green’s functions explicitly using first arrivals and related ampli-
tudes of Huygens’ secondary sources? Such multiarrival Green’s
functions will find wide applications not only in prestack Kirchhoff
depth migrations but also in wave equation-based migrations.
Recently, Luo et al., 2014a propose a Eulerian GO method, the fast
Huygens’ sweeping method, for constructing exactly such multiar-
rival Green’s functions by finite-differencing eikonal and transport
equations corresponding to Huygens’ secondary sources and inte-
grating physically valid, first-arrival Green’s functions of secondary
sources with the Huygens-Kirchhoff (HK) integral formula
(Burridge, 1962; Baker and Copson, 1987).
The idea of the fast Huygens’ sweeping method (Luo et al.,

2014a) can be summarized as follows: In some applications, it is
reasonable to assume that geodesics (rays) have a consistent orien-
tation, so that the Helmholtz equation may be viewed as an evolu-
tion equation in one of the spatial directions. With such applications
in mind, the fast Huygens’ sweeping method can be used for com-
puting Green’s functions of Helmholtz equations in inhomogeneous
media in the high-frequency regime and in the presence of caustics.
The first novelty of the method is that the HK secondary source
principle is used to integrate many locally valid asymptotic solu-
tions to yield a globally valid asymptotic solution, so that caustics
associated with the usual GO ansatz can be treated automatically.
The second novelty is that a butterfly algorithm is adapted to carry
out the matrix-vector products induced by the HK integration in
OðN log NÞ operations, where N is the total number of mesh
points, and the proportionality constant depends on the desired ac-
curacy and is independent of the frequency parameter. To reduce the
storage of the resulting traveltime and amplitude tables, each table is
compressed into a linear combination of tensor-product-based
multivariate Chebyshev polynomials, so that the information of
each table is encoded into a small number of Chebyshev coeffi-
cients. As a result, the method enjoys the following desired features:
(1) it precomputes a set of local traveltime and amplitude tables,
(2) it automatically takes care of caustics, (3) it constructs Green’s
functions of the Helmholtz equation for arbitrary frequencies and
for many point sources, and (4) for a fixed number of points per

wavelength, it constructs each Green’s function in nearly optimal
complexity in terms of the total number of mesh points, where
the prefactor of the complexity only depends on the specified ac-
curacy and is independent of the frequency parameter.
In this work, we further develop the fast Huygens’ sweeping

method by designing more efficient and robust finite-difference
methods for computing first-arrival traveltimes and corresponding
amplitudes, and we carry out systematic comparisons between our
globally valid asymptotic Green’s functions and those obtained by
directly finite differencing Helmholtz equations for various models,
including the Marmousi model.
Our fast Huygens’ sweeping method allows vertical and lateral

variations in velocity fields as long as the velocity fields host rays
with a consistent orientation, such as downgoing or upgoing, and
the resulting wavefield has no aperture limitation, which is different
from that obtained by solving an aperture-limited one-way wave
equation. In the context of fully recursive f-xmigration as illustrated
in Gray and May (1994), our method can be viewed as a semire-
cursive f-x modeling method, so that it is natural to further develop
the methodology into a semirecursive f-xmigration method, and this
is an ongoing project.
The paper is organized as follows: We start to present the factori-

zation approaches and Babich’s (1965) formulation for computing
phases and amplitudes, so as to construct locally valid GO Green’s
functions. High-order factorizations and approximations of phases
and amplitudes near source points will be presented. Then, we recall
the fast Huygens’ sweeping method for constructing globally valid
asymptotic Green’s functions. The 2D and 3D numerical experi-
ments are presented to demonstrate the performance of our meth-
ods. Concluding remarks are given at the end.

HIGH-ORDER APPROXIMATION OF EIKONAL
AND AMPLITUDE

We consider the Helmholtz equation with a point-source condi-
tion in the high-frequency regime:

∇2
rU þ ω2

v2ðrÞU ¼ −δðr − r0Þ; (1)

with the Sommerfeld radiation condition imposed at infinity, where
Uðr;ω; r0Þ is the wavefield, ω is the frequency, vðrÞ is the wave
speed, r0 ≡ ðx0; y0; z0Þ is the source point, and ∇2

r denotes the Lap-
lacian at r ≡ ðx; y; zÞ. The GO large-ω ansatz for Green’s function
with respect to a generic source r 0

Gðr;ω; r 0Þ ≈ Aðr; r 0Þeiωτðr;r 0Þ in 3D;�
≈

1ffiffiffiffi
ω

p Aðr; r 0Þeiðωτðr;r 0Þþπ∕4Þin 2D
�

(2)

yields the eikonal equation for phase τ and the transport equation for
amplitude A, respectively,

j∇rτj ¼
1

vðrÞ ; τðr 0; r 0Þ ¼ 0; (3)

∇r · ðA2∇rτÞ ¼ 0; Aðr 0; r 0Þ ¼ A 0ðr 0Þ: (4)

T92 Qian et al.
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Because τ and A are locally smooth in a neighborhood of the
source r 0 excluding the source itself (Milnor, 1963; Symes and
Qian, 2003), they yield a valid GO Green’s function in that local
neighborhood. Here, τ and A are weakly coupled in the sense that τ
must be computed first by solving eikonal equation 3 and then sub-
stituted in transport equation 4 for computing A. Because the Lap-
lacian of τ is involved in equation 4, to get lth order accurate A, at
least ðlþ 2Þth order accurate τ is required. Due to the source sin-
gularity because τ behaves like a distance function, which is non-
differentiable at the source point (Qian and Symes, 2002a),
computing high-order accurate τ and A by finite-differencing equa-
tions 3 and 4 is not a trivial matter. Without special treatments of
source singularities, any high-order finite-difference methods for
solving equations 3 and 4 can formally have at most first-order ac-
curacy and large errors.

High-order factorization for eikonals

We first recall a factorization approach to resolving the source
singularity for computing τ (Pica, 1997; Zhang et al., 2005; Fomel
et al., 2009; Luo and Qian, 2011, 2012; Luo et al., 2012). In the
factorization approach, τ is factored as

τ ¼ ~τ τ̄; (5)

where ~τ is predetermined analytically to capture the source singu-
larity, such that τ̄ is the new unknown that is smooth at the source
and satisfies the factored eikonal equation:

j~τ∇rτ̄ þ τ̄∇r ~τj ¼ 1∕vðrÞ: (6)

For instance, ~τ may be taken as ~τðr; r 0Þ ¼ jr − r 0j∕vðr 0Þ.
Because τ̄ is smooth at the source, we can solve equation 6 effi-

ciently with high-order Lax-Friedrichs weighted essentially nono-
scillatory (LxF-WENO) schemes as designed in Kao et al. (2004),
Zhang et al. (2006), Luo and Qian (2011), and Luo et al. (2012). In a
Pth order, LxF-WENO finite-difference method on a mesh of size
h, τ̄ must be initialized in the neighborhood of size 2ðP − 1Þh cen-
tered at the source, and these initial values are fixed during itera-
tions. Luo et al. (2014b) introduce an accurate, efficient, and
systematic approach to initialize τ̄ near the source. Based on the
power series expansion of τ2, which is smooth near the source,
one can derive approximations of τ near the source up to an arbitrary
order of accuracy.
We recall the derivation of the high-order approximation of τ near

the source. Assume that TðrÞ ≡ τ2ðrÞ and SðrÞ ≡ 1∕v2ðrÞ are ana-
lytic at the source, which is set to be the origin without loss of gen-
erality. We can expand T and S as a power series:

TðrÞ ¼
X∞
ν¼0

TνðrÞ; SðrÞ ¼
X∞
ν¼0

SνðrÞ; (7)

where Tν and Sν are homogeneous polynomials of degree ν in r.
From the eikonal equation 3, we have

ST ¼ 1

4
j∇rTj2: (8)

By substituting equation 7 into equation 8, we have

�X∞
ν¼0

SνðrÞ
��X∞

ν¼0

TνðrÞ
�

¼ 1

4

�X∞
ν¼0

∇rTνðrÞ
�

2

; (9)

from which one can derive fTνg term by term by collecting terms of
the same degree. Following Luo et al. (2014b), we can derive
T0ðrÞ ¼ 0; T1ðrÞ ¼ 0; T2ðrÞ ¼ S0r2; and a recursive formula for
computing TPðrÞ for P ≥ 3:

ðP − 1Þ S0 TPðrÞ

¼
XP−2
ν¼1

SνðrÞTP−νðrÞ −
1

4

XP−2
ν¼2

∇rTνþ1ðrÞ · ∇rTP−νþ1ðrÞ:

(10)
Then, we use the truncated sum ~TP ≡

P
P
ν¼2 Tν to approximate T

near the source, and we further choose ~τP ≡
ffiffiffiffiffiffi
~TP

q
to approximate

τ near the source with accuracy of jτðrÞ − ~τPðrÞj ¼ OðjrjPÞ;
jrj → 0.

Taking ~τP as high-order approximations of τ near the source, we
apply high-order LxF-WENO methods to solve the factored equa-
tion 6. In the Pth order LxF-WENO method for solving equation 6
to obtain τ̄, we first choose ~τðrÞ ≡ ffiffiffiffiffi

S0
p jrj. To initialize τ̄ near the

source, τ̄ is assigned as one at the source and as ~τP∕~τ at other points
in the 2ðP − 1Þh neighborhood of the source, so that these values
are fixed during the LxF-WENO sweeping iterations. At other
points, the LxF-WENO iterations are used to update τ̄ with
~τðrÞ ≡ ffiffiffiffiffi

S0
p jrj.

High-order factorization for amplitudes

We extend the above factorization approach to deal with the am-
plitude A near the source. Because A is singular at the source, we
introduce Babich’s (1965) formulation,

B ¼ Aτðd−1Þ∕2; (11)

into transport equation 4 for A, so that we have Babich’s (1965)
transport equation for the amplitude factor B:

∇rTðrÞ · ∇rBðrÞ þ BðrÞ
�
1

2
∇2

rTðrÞ − d∕v2ðrÞ
�
¼ 0; (12)

where d is the spatial dimension and TðrÞ ¼ τ2ðrÞ. Because the am-
plitude factor B is smooth near and at the source (Babich, 1965)
whereas the original amplitude A is singular at the source, we will
use this transport equation to derive high-order approximations of B
near the source. In addition, to power series expansions in equa-
tion 7, we assume that B’s power series expansion is given as

BðrÞ ¼
X∞
ν¼0

BνðrÞ; (13)

where Bν are homogeneous polynomials of degree ν in r. It follows
that Bν can be determined term by term by substituting equation 13
into equation 12:

Fast Huygens’ sweeping methods T93
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�X∞
ν¼2

∇rTνðrÞ
�
·

�X∞
ν¼1

∇rBνðrÞ
�

þ
�X∞

ν¼0

BνðrÞ
��

1

2

�X∞
ν¼2

∇2
rTνðrÞ

�
− d

�X∞
ν¼0

SνðrÞ
��

¼ 0:

(14)

We know from Babich (1965) that B0 ¼ 1∕2
ffiffiffiffiffi
2π

p
; for d ¼ 2;

and B0 ¼
ffiffiffiffiffi
S0

p
∕4π; for d ¼ 3:

Comparing the linear terms in equation 14 and using the homo-
geneity of B1, we have

∇rT2 ·∇rB1 þ
1

2
ðB0∇2

rT3 þB1∇2
rT2Þ− dðB0S1 þB1S0Þ

¼ 0;

⇒ 2S0r ·∇rB1 þ
1

2
ðB0∇2

rT3 þ 2B1dS0Þ− dðB0S1 þB1S0Þ
¼ 0;

⇒ 2S0B1 þ
1

2
B0∇2

rT3 − dB0S1 ¼ 0;

⇒ B1 ¼
1

2S0
ð−1

2
B0∇2

rT3 þ dB0S1Þ: (15)

Equating Pth-degree terms on both sides of equation 14, we have

BP ¼ 1

2PS0

�
−
XP−1
ν¼1

∇rBνðrÞ · ∇rTPþ2−νðrÞ

−
1

2

XP−1
ν¼0

BνðrÞ∇2
rTPþ2−νðrÞ þ d

XP−1
ν¼0

BνðrÞSP−νðrÞ
�
:

(16)

Consequently, we can now use the truncated sum to approximate
B; i.e.,

~BP ≡
XP
ν¼0

Bν; (17)

and j ~BP − Bj ¼ OðjrjPÞ; jrj → 0.

Taking ~BP as a high-order approximation of B near the source,
we will apply high-order LxF-WENO methods to solve Babich’s
(1965) transport equation 12 for B. In the Pth-order LxF-WENO
method for solving equation 12, B is assigned as ~BP in the
2ðP − 1Þh-neighborhood of the source, so that these values are
fixed during the LxF-WENO iterations; at other points, the LxF-
WENO iterations are used to update B.
Comparing with the adaptive mesh refinement method for treat-

ing the source singularity used in Kim and Cook (1999) and Qian
and Symes (2002a), high-order factorization-based LxF-WENO
sweeping methods make computing high-order accurate τ̄ and B
easy and efficient, resulting in high-order accurate τ and A and lo-
cally valid first-arrival Green’s functions. If one is satisfied with
accurate first-arrival Green’s functions, then the schemes developed

above suffice. However, because in general one needs multiarrival
Green’s functions, we incorporate these first-arrival Green’s func-
tions into the fast Huygens’ sweeping method introduced in Luo
et al. (2014a) to build globally valid multiarrival Green’s functions.

HUYGENS’-PRINCIPLE-BASED GLOBALLY
VALID GREEN’S FUNCTIONS

Assume that a domain Ω is illuminated by an exterior source
r0 ∈= Ω, and S ¼ ∂Ω is the closed surface enclosing the domain
Ω (see Figure 1a). At any observation point r ∈ Ω, the wavefield
Uðr; r0Þ excited by the source r0 can be written as the HK integral
over S (Burridge, 1962; Baker and Copson, 1987):

Uðr; r0Þ ¼
Z
S
fGðr 0; rÞ∇r 0Uðr 0; r0Þ

· nðr 0Þ − Uðr 0; r0Þ∇r 0Gðr 0; rÞ · nðr 0ÞgdSðr 0Þ

¼
Z
S
fGðr; r 0Þ∇r 0Uðr 0; r0Þ

· nðr 0Þ − Uðr 0; r0Þ∇r 0Gðr; r 0Þ · nðr 0ÞgdSðr 0Þ;
(18)

where Gðr; r 0Þ ¼ Gðr 0; rÞ by reciprocity, nðr 0Þ is the outward nor-
mal to S at r 0 ¼ ðx 0; y 0; z 0Þ, and Gðr; r 0Þ is the Green’s function
associated with the source r 0. In the integral, Gðr; r 0Þ and
∇r 0Gðr; r 0Þ · nðr 0Þ associated with r 0 on S can be approximated
with the GO ansatz 2.
By retaining the leading-order term after substituting equation 2

into equation 18, we have

Uðr;r0Þ≈
Z
S
fGðr;r0Þ½∇r0Uðr0;r0Þ ·nðr0Þ�−Gðr;r0Þ∇r0τðr;r0Þ

·nðr0Þ½iωUðr0;r0Þ�gdSðr0Þ

≈
Z
S
fGðr;r0Þ½∇r0Uðr0;r0Þ ·nðr0Þ�

−Gðr;r0Þcosðθðr;r0ÞÞ½iωUðr0;r0Þ∕vðr0Þ�gdSðr0Þ;
(19)

where θ is the takeoff angle of the ray from source r 0 to receiver r
and is constant along the ray; i.e.,

∇rθðr; r 0Þ · ∇rτðr; r 0Þ ¼ 0; (20)

consequently,

∇r cosðθðr; r 0ÞÞ · ∇rτðr; r 0Þ ¼ 0. (21)

Because the first-arrival GO approximations of Green’s functions
associated with the secondary sources are valid only locally, equa-
tion 19 can only be used in a narrow band near S, so that rays ema-
nating from the source have not yet developed caustics. Hence, the
fast Huygens’ sweeping method carries out integration 19 in a layer-
by-layer manner (see Figures 1b and 2). The secondary sources are
placed on the top boundary of each layer, and HK integral 19 is
performed inside each layer.
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Layer-based Huygens’ sweeping

We recall the planar-layer-based Huygens’ sweeping method
(Luo et al., 2014a) as illustrated in Figures 1b and 2 and summa-
rized below.

Algorithm: Algorithmic sketch for Huygens’
sweeping method

• Stage 1 (offline): Precompute asymptotic ingredients, such
as phases, amplitudes, and takeoff angles. Because these in-
gredients only depend on the velocity and do not depend on
wavelength or frequency, they can be computed on very
coarse meshes using high-order schemes. We carry out
the following steps: (1) the whole computational domain
is partitioned into layers as in Figure 1b, so that rays ema-
nating from the primary source and each secondary source
have not yet developed caustics, (2) the tables of phases, am-
plitudes, and takeoff angles with respect to the primary
source in the first layer (see Figure 2a) as well as those tables
for each secondary source located on the layer boundary of
the other layers (see Figure 2b) are computed by solving the
relevant equations as described above with high-order LxF-
WENO methods in the corresponding layer, and (3) these
tables are compressed with the Chebyshev expansion-based
data compression technique (Boyd, 2001; Alkhalifah, 2011;
Luo et al., 2014a; see Appendix A).

• Stage 2 (online): Given a frequency ω, we specify 4–6 points
per wavelength, so that the wavefield is sampled with nmesh
points along each dimension: (1) in the first layer containing
the primary source, construct the first-arrival Green’s func-
tion with tables of the primary source (see Figure 2a),
(2) from the second layer to all the other layers, for each line

of secondary sources on the layer boundary, tables of phases,
amplitudes, and takeoff angles are read from the hard drive,
and they are used to reconstruct the tables on the underlying
mesh by Chebyshev sums (see Appendix A); if necessary,
the tables are interpolated with respect to the secondary
sources onto the underlying mesh, and (3) HK integral 19
is then discretized with a numerical quadrature rule, such
as the trapezoidal rule as used in the current work, and
the resulting matrix-vector products are evaluated by a fast
butterfly algorithm as shown in Luo et al. (2014a) (see
Figure 2b).

Complexity analysis

In the above algorithm, two sets of different meshes are involved
in the computation. One set of meshes is used for computing GO
ingredients; because these ingredients are independent of wave-
length or frequency, these meshes are independent of wavelength
as well and can be very coarse, so that high-order schemes still
can yield sufficiently accurate GO ingredients. The other set of
meshes is used to sample the wavefield. Because we need to specify
four to six points per wavelength to resolve wave oscillations, these
meshes depend on the wavelength or frequency. Therefore, the fol-
lowing complexity analysis treats the two sets of meshes differently.
Assume that there are L layers in the partition. In stage 1, the

complexity of computing each table in each layer with LxF-WENO
methods is Oðmd−1ðm∕LÞ log mÞ, where m mesh points are used
for each spatial direction and the log m factor comes from the num-
ber of sweeping iterations. Because there are Oðmd−1Þ secondary
sources for each layer, the total complexity of computing all the
tables for secondary sources is LOðmd−1ðmd−1ðm∕LÞ log mÞÞ ¼
Oðm2d−1 log mÞ, which is analogous to the computational

a) b)

n

Figure 1. The 2D demonstration of the HK inte-
gral and partition of the domain into layers: (a) HK
integral with S an infinite plane and (b) partition of
the domain into planar layers. The star represents
the primary source.

fd

fd

fd

a) b) Figure 2. Receivers and sources in the HK integral
and illustration of the fast Huygens’ sweeping al-
gorithm. The larger star represents the primary
source, little stars represent the secondary sources
on the boundary of each layer, and the grid repre-
sents the mesh. In offline stage 1, the coarse mesh
is used. In online stage 2, the refined mesh is used
and depends on ω. The region of size df is inde-
pendent of ω. Panel (a) shows the first layer with
respect to the primary source and panel (b) shows a
layer l with l > 1 and with respect to secondary
sources on the boundary of this layer.
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complexity for asymptotic ingredients in the phase space (Symes
and Qian, 2003; Leung et al., 2007; Luo et al., 2014a). Because
these tables are precomputed and are independent of wavelength

or frequency, they can be computed on very coarse meshes using
high-order schemes and can be reused for different frequencies.
In stage 2, direct evaluation of the HK-integral induced matrix-

vector products is computationally expensive. To accelerate the
evaluation, we adapt a multilevel matrix decomposition-based but-
terfly algorithm originated in Michielssen and Boag (1996) and fur-
ther developed in O’Neil (2007), Candés et al. (2009), Hu et al.
(2013), and Luo et al. (2014a). Following Luo et al. (2014a), given
frequency ω, four to six points are specified per wavelength, so that
the wavefield is sampled with n mesh points along each spatial di-
rection. For each layer, the complexity of the butterfly algorithm
is Oðnd−1ðn∕LÞ logðnd−1ðn∕LÞÞÞ ¼ OððN∕LÞ log NÞ, where N ¼
OðndÞ, and the prefactor is independent of frequency ω; the com-
plexity of Chebyshev sums and interpolation with respect to secon-
dary sources is OðN∕LÞ, where the prefactor depends on the
number of spectral coefficients in the truncated Chebyshev expan-
sion. The number of spectral coefficients is considered to be much
smaller than OðnÞ. Therefore, the total complexity of constructing
the wavefield in the whole domain is OðN log NÞ (see Luo et al.
[2014a] for more implementation details of the fast butterfly algo-
rithm used here).
Once the data tables are precomputed, the fast Huygens’ sweep-

ing method can be used to construct the global wavefield with
OðN log NÞ complexity for a given primary source and for an ar-
bitrary given frequency. Moreover, the data tables can be reused for
many different primary sources. For different primary sources, only
the tables with respect to the primary sources inside the first layer
are recomputed. The tables of the other layers are reused. Therefore,
we refer to stage 1 as “offline” and stage 2 as “online.” These unique
merits are much desired in many applications, such as seismic im-
aging and inversion.

NUMERICAL EXAMPLES

We present several numerical experiments to demonstrate our
new method. We denote the coarse mesh in stage 1 as GO mesh.
We choose P ¼ 3 in the high-order factorization for computing τ
and B. The mesh for sampling wavefields is chosen such that a fixed
number of points (4–6 points) per wavelength are used to resolve
wave oscillations. We compare our numerical solutions with those
obtained by a direct solver on a much finer mesh. For the direct
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Figure 3. Real part of the wavefield for the sinusoidal model.
(a) Obtained by our method (mesh 101 × 201, solid black lines in-
dicating the locations of secondary sources for each layer) and
(b) obtained by the direct Helmholtz solver (mesh 801 × 1601
and ω ¼ 32π). The primary source point is 0.5 and 0.2 km.
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Figure 4. Real part of the wavefield for the sinusoidal model. Com-
parisons between the solutions obtained by our method and the di-
rect Helmholtz solver at (a) z ¼ 0.55 and (b) z ¼ 1.75 km,
respectively. Solid lines represent solutions by the direct Helmholtz
solver, and circles represent solutions by our method (p ¼ 9 and
ω ¼ 32π). The primary source point is 0.5 and 0.2 km.

Table 1. Sinusoidal model. Numerical accuracy and comparisons on CPU time (s) between the butterfly algorithm-based HK
summation (denoted as TM) and the direct HK summation (denoted as TD) in the second layer. Here, p � 9 Chebyshev nodes
are used in each dimension. The source point is 0.5 and 0.2 km. NPW denotes the number of points per wavelength.

Mesh 201 × 61 401 × 121 801 × 241 1601 × 481 3201 × 961 6401 × 1921

ω∕2π 32 64 128 256 512 1024

NPW 5 5 5 5 5 5

TD (s) 0.28 1.48 13.12 100.84 810.60 6503.15

p ¼ 9

L2 (abs) 1.43E − 5 6.03E − 6 4.06E − 6 4.03E − 6 2.65E − 6 2.37E − 6

L2 (rel) 1.34E − 3 7.98E − 4 7.62E − 4 1.07E − 3 9.99E − 4 1.26E − 3

TM (s) 0.61 1.55 4.69 18.30 66.43 299.67

TM∕TD 0.46 0.95 2.80 5.51 12.20 21.70
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finite-difference Helmholtz solver, we use a nine-point stencil (Jo
et al., 1996) instead of the usual five-point stencil to reduce
dispersion errors and obtain more reliable wavefields; perfectly
matched layer absorbing boundary conditions are also imposed
(Berenger, 1994). The resulting sparse linear system is solved by
the sparse lower-upper triangular (LU) solver in the MATLAB
platform.

Example 1: 2D sinusoidal velocity model

In this example, the velocity is chosen as

v ¼ 1þ 0.2 sinð3πðxþ 0.05ÞÞ sinð0.5πzÞ ðkm∕sÞ; (22)

on the domain 0.1 × 0.2 km. In stage 1, the GO coarse mesh is
101 × 201, and the asymptotic ingredients are compressed with
the ratio of 50:1. In stage 2, the separation distance df between
the sources and receivers is fixed as 0.1 km.
Figure 3 shows the contour plots of the numerical solutions ob-

tained by our approach and the direct Helmholtz solver mentioned
above with ω ¼ 32π. Our approach uses approximately five points
per wavelength, whereas the direct solver uses approximately 40
points per wavelength. Figure 4 shows comparisons between the
solutions. Table 1 shows the efficiency and stability of our method
and comparisons between the butterfly algorithm and direct sum-
mation.

Figure 5 shows numerical solutions by our method and the direct
solver with a different setup, where the domain is 0.1 × 0.3 km and
the source is at 0.5 and 1.5 km.

Example 2: Synthetic Marmousi velocity model

In this example, we construct wavefields for the Marmousi
model. The original model is sampled on a 0.024 × 0.024 km grid,
consisting of 384 samples in the x-direction and 122 samples in the
z-direction; therefore, the domain is ½0; 9.192� × ½0; 2.904� km. Be-
cause we need high-order derivatives of the velocity in high-order
approximations, the velocity is smoothed by solving the following
least-squares regularization problem:

min
vðrÞ

fjvðrÞ − vmðrÞj2 þ αj∇rvðrÞj2 þ βj∇2
rvðrÞj2g; (23)

where vm is the original Marmousi model α and β are the smooth-
ness parameters. We choose α ¼ β ¼ 10−4. Figure 6 shows the
Marmousi models. We first test a case with smoothed velocity.
The velocity field is a sampled window from receivers 218 to
313 (96 receivers in total) in the smoothed-Marmousi model.
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Figure 5. Real part of the wavefield for the sinusoidal model.
(a) Obtained by our method (mesh 101 × 301 and solid black lines
indicating the locations of secondary sources for each layer) and
(b) obtained by the direct Helmholtz solver (mesh 801 × 2401
and ω ¼ 32π). The primary source point is 0.5 and 1.5 km.
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Figure 6. Marmousi model. (a) The original Marmousi velocity
field and (b) the smoothed-velocity field. The region between
the two black lines is the sampled window from receivers 218 to
313.
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Figure 7. Smoothed-Marmousi model with velocity in Figure 6.
Real part of the wavefield (a) obtained by our method, (b) obtained
by the direct Helmholtz solver. Solid lines show the positions of the
secondary sources, and panels (c and d) are comparisons of the sol-
utions at z ¼ 1.472 and 2.592 km, respectively, where circles re-
present the solution by our method and solid lines represent the
solution by the direct Helmholtz solver.
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Figure 8. Marmousi model with (a) the original Marmousi velocity
field and (b) a slightly smoothed velocity field. The region between
the two black lines is the sampled window from receivers 41 to 158.
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The windowed domain is ½5.208; 7.488� × ½0; 2.904� km. In stage
1, the GO coarse mesh is 96 × 122 and the asymptotic ingredients
are compressed with ratio 25:1. In stage 2, the separation distance
df between the sources and receivers is fixed at 0.192 km.
We apply our new algorithm to the smoothed-Marmousi velocity

model as in Figure 6b. This synthetic geologic structure creates
many strong and localized velocity heterogeneities. Figure 7 shows
the wavefields with the primary source point given as 5.380 and
0.24 km and ω ¼ 32π by two different methods, where the fast

Huygens’ sweeping method uses a mesh of 286 × 364 points,
and the direct Helmholtz solver uses a mesh of 1711 × 2179 points.
To apply the direct Helmholtz solver on the fine mesh, the velocity
field on the original coarse mesh is interpolated onto the finer mesh
first with spline interpolations.
Next, we choose a sampled window from receivers 41 to 158

of the Marmousi model, where the velocity is only slightly
smoothed (see Figure 8). The windowed domain is ½0; 2.904� ×
½0.96; 3.768� km. In stage 1, the GO coarse mesh is 118 × 122,
and the data compression ratio for asymptotic ingredients is
25:1. In stage 2, the separation distance df between the sources
and receivers is fixed at 0.192 km.
Figure 9 shows the wavefields with the primary source point

given as 1.488 and 0.48 km and ω ¼ 32π by the two methods,
where the fast Huygens’ sweeping method uses a mesh of
352 × 364 points, and the direct Helmholtz solver uses a mesh
of 2107 × 2179 points. To apply the direct Helmholtz solver on
the fine mesh, the velocity field on the original coarse mesh is in-
terpolated onto the finer mesh first with spline interpolations.

Example 3: 3D Vinje et al. (1996) velocity model

In the example, the velocity is chosen as

v ¼ 3.0 − 1.75eð−ððx−1Þ2þðy−1Þ2þðz−1Þ2Þ∕0.64Þ ðkm∕sÞ; (24)

on the domain 0.2 × 0.2 × 0.2 km. In stage 1, the GO coarse mesh
is 51 × 51 × 51 and the data compression ratio for asymptotic in-
gredients is 32:1. In stage 2, the separation distance df between
the sources and receivers is fixed at 0.3 km.
We partition the 3D domain into two layers at the plane

z ¼ 1.2 km. When ω ¼ 32π, there are roughly 26 waves propagat-
ing in each direction. If a direct solver is used to compute the wave-
field, then the number of unknowns is roughly 17 million if 10
points per wavelength are used to capture each wave, resulting
in a huge linear system to deal with, not to mention the fact of

whether 10 points per wavelength will be suffi-
cient. To use our fast Huygens’ sweeping meth-
od, we choose approximately four points per
wavelength.
Figure 10 shows the results for different pri-

mary sources. The tables corresponding to the
primary source in the first layer need to be re-
computed for different primary sources. Tables
with respect to those secondary sources do not
need to be recomputed. Table 2 shows the run-
ning times of our method for different ω’s.

CONCLUSION

We have developed the fast Huygens’ sweep-
ing method for evaluating the HK integral, so
that locally valid first-arrival Green’s functions
can be integrated into a globally valid multiar-
rival Green’s function. The needed ingredients
for constructing first-arrival Green’s functions,
such as first-arrival traveltimes and amplitudes,
were computed by using a set of newly devel-
oped tools, including the factorization approach,
the Babich’s formulation, power-series-based
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Figure 9. Smoothed-Marmousi model with velocity in Figure 8.
Real part of the wavefield (a) obtained by our method and (b) ob-
tained by the direct Helmholtz solver. Solid lines show the positions
of the secondary sources, and panels (c and d) are comparisons of
the solutions at x ¼ 2.640 and 3.360 km, respectively, where circles
represent the solution by our method and solid lines represent the
solution by the direct Helmholtz solver.
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Figure 10. The Vinje model. Wavefields are constructed by our method on a mesh
101 × 101 × 101 with ω ¼ 32π. In panels (a-c), the primary point source is 0.6, 0.6,
and 0.24 km, and in panels (d-f), the primary source is 1.4, 1.4, and 0.36 km. Panels
(a-c) show the real part of the wavefields at x ¼ 0.6 , y ¼ 0.6 , and z ¼ 1.8 km, respec-
tively, and panels (d- f) show the real part of the wavefields at x ¼ 1.4, y ¼ 1.4, and
z ¼ 1.8 km, respectively.
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high-order approximations, and high-order LxF-WENO methods.
The HK integrals were evaluated by adapting a fast butterfly algo-
rithm, so that the fast Huygens’ sweeping method has computa-
tional complexity OðN log NÞ, where N is the total number of
mesh points, and the proportionality constant depends on the de-
sired accuracy as well as is independent of frequency. Numerical
examples demonstrated the performance, efficiency, and accuracy
of the proposed method.
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APPENDIX A

COMPRESSION WITH CHEBYSHEV EXPANSION

We illustrate the compression process for a 3D traveltime table.
The same can be done for amplitude and takeoff angle tables and for
2D tables (Boyd, 2001; Alkhalifah, 2011). Without a loss of gen-
erality, we assume that the traveltime τðr; r0Þ is defined on ½−1; 1�3
for a given source point r0. The τ can be expanded in terms of Che-
byshev polynomials of the first kind (Boyd, 2001):

τðr; r0Þ ¼ τðx; y; z; r0Þ

¼
X∞
m¼0

X∞
n¼0

X∞
k¼0

Cmnkðr0ÞTmðxÞTnðyÞTkðzÞ; (A-1)

where Tlð·Þ is the Chebyshev polynomial of the first kind and of
order l: Tlð·Þ ¼ cosðl cos−1ð·ÞÞ and fCmnkðr0Þg are spectral coeffi-
cients. To determine fCmnkðr0Þg, we use the computed traveltime
on the coarse mesh in stage 1. The fCmnkðr0Þg are then computed
with the fast Fourier cosine transform (Boyd, 2001; Alkhalifah,
2011). In numerical applications, for a given accuracy it is enough
to keep only the first few coefficients among fCmnkðr0Þg:

τðr; r0Þ ¼ τðx; y; z; r0Þ

≈
XCX−1

m¼0

XCY−1

n¼0

XCZ−1

k¼0

Cmnkðr0ÞTmðxÞTnðyÞTkðzÞ; (A-2)

with CX , CY , and CZ being the given numbers. Instead of saving τ
on the coarse mesh, the set of significant coefficients,

~C ¼ fCmnkðr0Þ∶0 ≤ m ≤ CX − 1;

0 ≤ n ≤ CY − 1; 0 ≤ k ≤ CZ − 1g; (A-3)

will be saved for later use. In practice, it is possible to reconstruct τ
with high accuracy even with a relatively high compression ratio
defined as ðthe size of the coarse meshÞ∕ðCXCYCZÞ.
With ~C, the traveltime on any specified computational mesh can

be computed by evaluating formula A-2 on that mesh as product
of low-rank matrices, which is detailed below using MATLAB
notation:

• In 3D, τ on a mesh of size M × N × K spanned by
X ¼ ½−1∶hx∶1�, Y ¼ ½−1∶hy∶ − 1�, and Z ¼ ½−1∶hz∶1� is
reconstructed by

τ ¼ permuteðpermuteðTX
0 ~CTZ; ½ 1 3 2 �Þ

TY; ½ 1 3 2 �Þ; (A-4)

where TX, TY, and TZ are of size CX ×M, CY × N, and
CZ × K, respectively, and

TXðl; ∶Þ ¼ Tl−1ðXÞ; TYðl; ∶Þ ¼ Tl−1ðYÞ; and

TZðl; ∶Þ ¼ Tl−1ðZÞ: (A-5)

• In 2D, τ on a 2D mesh of size M × K spanned by
X ¼ ½−1∶hx∶1� and Z ¼ ½−1∶hz∶1� is reconstructed as

τ ¼ TX
0 ~CTZ; (A-6)

where ~C is of size CX × CZ.
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