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Abstract

We propose a new methodology for carrying out eikonal-based traveltime tomogra-

phy arising from important applications such as seismic imaging and medical imaging.

The new method formulates the traveltime tomography problem as a variational prob-

lem for a certain cost functional explicitly with respect to both traveltime and sound

speed. Furthermore, the cost functional is penalized to enforce the nonlinear equality

constraint associated with the underlying eikonal equation, biharmonically regularized

with respect to traveltime, and harmonically regularized with respect to sound speed.

To overcome the difficulty associated with the inherent nonlinearity of the eikonal

equation, the Euler-Lagrange equation of the penalized-regularized variational prob-

lem is reformulated into an equivalent, mixed optimality system. This mixed system

is associated with an initial value problem which is solved by an operator-splitting

based solution method, and the splitting approach effectively reduces the optimality

system into three nonlinear subproblems and three linear subproblems. Moreover, the

nonlinear subproblems can be solved pointwise, while the linear subproblems can be

reduced to linear second-order elliptic problems. Numerical experiments show that

the new method can carry out traveltime tomography successfully and recover sound

speeds efficiently.

1 Introduction

Traveltime tomography is a class of important inverse problems arising from a variety of ap-
plications, such as seismic imaging, medical imaging, non-destructive testing, and underwater
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acoustics. Given the traveltime data between sources and receivers, traveltime tomography
posed as an inverse problem is to recover the sound speed of the underlying interior medium
between sources and receivers from traveltime measurements. Since there may exist multiple
ray paths to connect a source and a receiver, traveltime tomography may be formulated as
first-arrival (single-arrival) based or multi-arrival based inverse problems, which correspond
to boundary rigidity or lens rigidity problems in differential geometry, respectively. In this
paper, given first-arrival traveltime boundary data, we develop a penalization-regularization-
operator splitting method for eikonal-based traveltime tomography.

Traditional traveltime tomography methods mostly rely on ray-tracing to compute trav-
eltimes between sources and receivers so as to fit the traveltime data [23]. Ray-tracing
based approaches have at least two shortcomings: firstly, since the Hamiltonian system for
computing ray paths is very sensitive to initial conditions and it is generally difficult to
control where a ray goes, it is a nontrivial task to assign traveltimes from a source to all
receivers by ray-tracing in numerical simulations; secondly, Fermat-principle based shoot-
ing methods for two-point boundary value problems between a source and a receiver may
fail to converge. Consequently, some alternative methods are sought to avoid explicit ray-
tracing. Based on the eikonal solvers for first-arrival traveltimes [42], Ammon and Vidale [1]
developed a traveltime tomography method without rays by computing explicitly the dis-
cretized Frechet derivative of first-arrival traveltime with respect to sound speed. To avoid
computing Frechet derivatives directly, Sei and Symes [31, 32] proposed an adjoint-state
method for traveltime tomography based on paraxial eikonal equations. Later on, Leung
and Qian [14] developed adjoint state methods systematically for traveltime tomography
based on eikonal equations, and this adjoint state method has been further developed in
[39, 11, 16, 17]. The success of all these eikonal based first-arrival traveltime tomography
methods heavily relies on robust and efficient eikonal solvers which have been extensively
developed in the last two decades[42, 41, 29, 30, 10, 33, 27, 28, 43, 40, 13, 12, 19, 18]. So the
question is that: can we develop an efficient algorithm for traveltime tomography without
eikonal solvers or ray tracing? In this paper, we exactly attempt to develop such a method by
proposing new variational formulations for eikonal-based traveltime tomography so that an
efficient penalization-regularization-operator splitting methodology can be applied to solve
the underlying inverse problems.

Suppose that traveltime tomography is posed as a least-squares data fitting problem.
Then the inverse problem is to find a suitable sound speed to minimize the mismatch be-
tween measured and simulated traveltimes in the least-squares sense. While the adjoint-state
method for first-arrival traveltime tomography [14] may be viewed as some kind of primal-
dual formulation of least-squares traveltime tomography in the sense that the solution of
the adjoint state equation is a Lagrange multiplier, the penalization-regularization approach
proposed here may be viewed as a least-squares primal formulation. So a natural question
is: what are the advantages of the new approach over the adjoint state approach? The
adjoint state method has at least two drawbacks that are frequently neglected. The first one
is associated with the theoretical question of well-posedness of the adjoint state equation
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as the equation is in conservation form with possible discontinuous coefficients defined by
the gradient of traveltime which is the viscosity solution of the eikonal equation; there is no
known well-posedness result for such an equation yet. The second one is that traveltime to-
mography being a complicated problem it is unlikely that the discretized adjoint equation is
really the adjoint equation of the discrete problem as derivation of adjoint and discretization
do not commute in general. Nevertheless, these two drawbacks of the adjoint state method
[14] do not deter us from using the method as it is successfully applied in practice already
[39, 11]. On the other hand, the least-squares primal formulation proposed here does not
have those shortcomings as all the equations involved are well understood.

As is well known, given first-arrival traveltime measurements, ray-tracing based travel-
time tomography may not be able to simulate first-arrival traveltimes so as to fit the data,
while the adjoint state method [14] indeed simulates first-arrivals to fit the given data. So
the question is: does the penalization-regularization approach proposed here simulate first-
arrival traveltimes to fit the given data? In [5] and [8] an analogous approach for solving
Dirichlet problems for eikonal equations is shown to yield a (kind of) viscosity solution in a
Stokes sense (in two-dimension, at least). Moreover, our current numerical examples strongly
indicate that the new approach also simulates first-arrival traveltimes to fit the given data,
so the corresponding solution for the eikonal equation may be a viscosity solution in the
sense of Crandall-Lions [4]. We will report theoretical results for this question in a future
publication.

Theoretically, viewed as a boundary rigidity problem, first-arrival traveltime tomography
consists in determining a compact Riemannian manifold with boundary up to an action of
a diffeomorphism which is the identity at the boundary by knowing the geodesic distance
function between boundary points (see [21, 22, 20, 24, 34] and references therein). One
needs an a-priori hypothesis to do so since it is easy to find counterexamples if the index of
refraction is too large in certain regions. An a-priori condition that has been proposed is
simplicity of the metric [20]. A manifold is simple if the boundary is strictly convex with
respect to the Riemannian metric and there are no conjugate points along any geodesic. So
far it seems to be difficult to handle the case with conjugate points since they are related
to the so-called caustics and multi-arrivals in geometrical optics [34, 35, 36]. In practice, we
do not know in advance whether the Riemannian metric defined by the underlying sound
speed is simple or not. Consequently, the available first-arrival traveltime information may
not suffice to determine the sound speed so that the resulting sound speed model may
have limited resolution when the to-be-imaged structure is very complicated, and this can
be observed in our numerical results for the Marmousi model. To improve resolution of
traveltime tomography, we have to take into account multi-arrivals as demonstrated in [15,
2, 3]. It is an ongoing effort to develop a penalization-regularization approach for multi-
arrival traveltime tomography.

Our new method formulates the traveltime tomography problem as a variational prob-
lem for a certain cost functional explicitly with respect to both traveltime and sound speed.
Furthermore, the cost functional is penalized to enforce the nonlinear equality constraint
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associated with the underlying eikonal equation, biharmonically regularized with respect to
traveltime, and harmonically regularized with respect to sound speed. To overcome the dif-
ficulty associated with the inherent nonlinearity of the eikonal equation, the Euler-Lagrange
equation of the penalized-regularized variational problem is reformulated into an equivalent,
mixed optimality system. This mixed system is associated with an initial value problem
which is solved by an operator-splitting based solution method, and the splitting approach
efficiently reduces the optimality system into three nonlinear subproblems and three lin-
ear subproblems. Moreover, the nonlinear subproblems can be solved pointwise, and the
linear subproblems can be reduced to linear second-order elliptic problems. Numerical ex-
periments show that the new method can carry out traveltime tomography successfully and
recover sound speeds efficiently.

2 Problem formulations

Let Ω be a bounded domain of Rd (d = 2 or 3 in practice); we denote by Γ the boundary of
Ω. The problem is to find a function copt of x such that

copt ∈ C, J(copt) ≤ J(c) , ∀c ∈ C , (1)

where the convex set C is defined by

C = {c : c ∈ L2(Ω), 0 < cmin ≤ c(x) ≤ cmax, a.e. on Ω} ;

the cost function J is defined by

J(c) =
1

2

∫

Γ

|z − yd|2dΓ ,

where z is the solution of the following eikonal equation problem











|∇z| = 1
c

in Ω,

z ≥ 0 ,

z(xs) = 0 , xs ∈ Ω.

(2)

Let us denote c−2 by v; then problem (1) is clearly equivalent to

{

find {y, u} ∈ E such that

j(y, u) ≤ j(z, v) , ∀{z, v} ∈ E ,
(3)

where the functional j is defined by

j(z, v) =
1

2

∫

Γ

|z − yd|2dΓ (4)
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and the set E by

E =

{

{z, v} : z ∈ W 1,∞(Ω), z ≥ 0, z(xs) = 0, |∇z|2 = v, 0 <
1

c2max

≤ v(x) ≤ 1

c2min

, a.e. on Ω

}

.

(5)
Actually, there is equivalence between (3) and

{

find {y, u} ∈ E such that

jC(y, u) ≤ jC(z, v) , ∀{z, v} ∈ E ,
(6)

where C > 0 and

jC(z, v) =
1

2

∫

Ω

|∇z|2dx− 1

2

∫

Ω

vdx+
C

2

∫

Γ

|z − yd|2dΓ . (7)

From now on we will assume that yd ≥ 0 and will denote c−2
max (resp., c−2

min) by a (resp., b).
Following [5] and [8], we advocate for the solution of the constrained minimization problem

(6) a methodology combining penalization, regularization and operator-splitting. Let us
introduce first ǫ = {ǫ1, ǫ2, ǫ3}, ǫi’s being small positive numbers. We approximate problem
(6) by a less constrained one, namely

{

find {y, u} ∈ V +
0 ×K such that

jǫC(y, u) ≤ jǫC(z, v) , ∀{z, v} ∈ V +
0 ×K ,

(8)

where

V +
0 = {z : ∇2z ∈ L2(Ω), z ∈ W 1,4(Ω), z(xs) = 0, z ≥ 0} , (9)

K = {v : v ∈ H1(Ω), a ≤ v(x) ≤ b, a.e. on Ω} , (10)

and

jǫC(z, v) =
ǫ1
2

∫

Ω

|∇2z|2dx+
1

2

∫

Ω

|∇z|2dx+
C

2

∫

Γ

|z − yd|2dΓ +
ǫ2
2

∫

Ω

|∇v|2dx

−1

2

∫

Ω

vdx+
1

4ǫ3

∫

Ω

∣

∣|∇z|2 − v
∣

∣

2
dx . (11)

In the above definition of the functional jǫC(z, v), the last term associated with ǫ3 is a penalty
term of the Ginzburg-Landau type, used to enforce the eikonal equation treated as an equality
constraint. The regularization terms associated with ǫ1 and ǫ2 are used to control possible
oscillations of the solution. If v is taken to be fixed, the functional jǫC(z, v) is analogous to
a biharmonic regularization technique used in [5] and [8], which leads to viscosity solutions
of the eikonal equation in the sense of Stokes (in two-dimension, at least).

Using continuity, convexity and compactness arguments we can easily show that the
minimization problem (8) has a solution.
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We remark that the convex set V +
0 is the positive cone of the space V0 defined by

V0 = {z : ∇2z ∈ L2(Ω), z ∈ W 1,4(Ω), z(xs) = 0} .

Since the injection of W 1,4(Ω) in C0(Ω̄) is continuous if d = 2 and 3 (indeed it is compact), V0

(resp., V +
0 ) is a closed subspace (resp., closed convex subset) of the spaceW 1,4(Ω)∩H(Ω,∇2),

with H(Ω,∇2) = {z : z ∈ L2,∇2z ∈ L2(Ω)}.
In the following section we are going to provide a system of optimality conditions verified

by {y, u} solution of (8); this is an essential step toward the iterative solution of the above
problem.

3 Optimality conditions for problem (8)

Using classical tools from Calculus of Variations, we can easily show that any solution {y, u}
of problem (8) has to verify the following coupled system of elliptic variational inequalities,











y ∈ V +
0 ,

ǫ1
∫

Ω
∇2y∇2(z − y)dx+

∫

Ω
∇y · ∇(z − y)dx+ C

∫

Γ
(y − yd)(z − y)dΓ+

1
ǫ3

∫

Ω
(|∇y|2 − u)∇y · ∇(z − y)dx ≥ 0 , ∀z ∈ V +

0 ,

(12)

{

u ∈ K ,

ǫ2
∫

Ω
∇u · ∇(v − u)dx+ 1

2ǫ3

∫

Ω
(u− |∇y|2) (v − u)dx− 1

2

∫

Ω
(v − u)dx ≥ 0 , ∀v ∈ K .

(13)

The main difficulty with the above system is related to the cubic nonlinear term |∇y|2∇y
in (12). To overcome this difficulty we are going to introduce the vector-valued function
p = ∇y and transfer the nonlinearity burden from y to p via an appropriate equivalent
reformulation of system (12)-(13). Next, we will associate to this new optimality system
an initial value problem to be time-discretized by an operator splitting scheme decoupling
nonlinearities and those differential operators involving the space variables.

Let us introduce the convex set W+ defined by

W+ =
{

{z,q} : z ∈ V +
0 ,q ∈

(

L4(Ω)
)d

,q = ∇z
}

.

There is then equivalence between the optimality system (12)-(13) and











{y,p} ∈ W+ ,

ǫ1
∫

Ω
∇ · p∇ · (q− p)dx+

∫

Ω
p · (q− p)dx+ C

∫

Γ
(y − yd)(z − y)dΓ+

+ 1
ǫ3

∫

Ω
(|p|2 − u)p · (q− p)dx ≥ 0 , ∀{z,q} ∈ W+ ,

(14)

{

u ∈ K ,

ǫ2
∫

Ω
∇u · ∇(v − u)dx+ 1

2ǫ3

∫

Ω
(u− |p|2)(v − u)dx− 1

2

∫

Ω
(v − u)dx ≥ 0 , ∀v ∈ K .

(15)
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Actually, the above system can be reformulated itself as the following one, better suited
to an operator-splitting based solution method:



















{y,p} ∈ V +
0 × (L4(Ω))

d
,

ǫ1
∫

Ω
∇ · p∇ · (q− p)dx+

∫

Ω
p · (q− p)dx+ C

∫

Γ
(y − yd)(z − y)dΓ+

1
ǫ3

∫

Ω
(|p|2 − u)p · (q− p)dx+ 〈∂I∇(y,p), {z − y,q− p}〉 ≥ 0 ,

∀{z,q} ∈ V +
0 × (L4(Ω))

d
,

(16)











u ∈ H1(Ω) ,

ǫ2
∫

Ω
∇u · ∇vdx+ 1

2ǫ3

∫

Ω
(u− |p|2)vdx− 1

2

∫

Ω
vdx+ 〈∂IK̃(u), v〉 = 0 ,

∀v ∈ H1(Ω) ,

(17)

where, in (16)-(17), ∂I∇ (resp., ∂IK̃) denotes the sub-gradient of the indicator functional I∇
(resp., IK̃) with

I∇(z,q) =

{

0 if {z,q} ∈ W+ ,
+∞ otherwise

(18)

(resp.,

IK̃(v) =

{

0 if v ∈ K̃ ,
+∞ otherwise

(19)

with K̃ = {v : v ∈ L2(Ω), a ≤ v(x) ≤ b, a.e. in Ω}).
In order to capture the steady state solution by solving (16)-(17) we associate with this

system the following initial value problem (flow in the dynamical system terminology):

For {{y0,p0}, u0} ∈ W+×K, find ∀t ∈ (0,+∞), {y(t),p(t), u(t)} ∈ V +
0 ×(L4(Ω))

d×H1(Ω),
verifying:



















{y(0),p(0)} = {y0,p0}(∈ W+) ,
∫

Ω
∂p(t)
∂t

· (q− p(t))dx+ ǫ1
∫

Ω
∇ · p(t)∇ · (q− p(t))dx+

∫

Ω
p(t) · (q− p(t))dx+

C
∫

Γ
(y(t)− yd)(z − y(t))dΓ + 1

ǫ3

∫

Ω
(|p(t)|2 − u(t))p(t) · (q− p(t))dx+

〈∂I∇(y(t),p(t)), {z − y(t),q− p(t)}〉 ≥ 0 , ∀{z,q} ∈ V +
0 × (L4(Ω))

d
;

(20)











u(0) = u0(∈ K) ,
1
γ

∫

Ω
∂u(t)
∂t

vdx+ ǫ2
∫

Ω
∇u(t) · ∇vdx+ 1

2ǫ3

∫

Ω
(u(t)− |p(t)|2)vdx− 1

2

∫

Ω
vdx+

〈∂IK̃(u(t)), v〉 = 0 , ∀v ∈ H1(Ω) .

(21)

In the above, we have used the notation ϕ(t) for the function x → ϕ(x, t), and γ (> 0) is a
scaling factor. In order to adjust γ, we need to remember that, ideally,

|p|2 = u . (22)
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Differentiating with respect to t, we obtain from (22) that 2p · ∂p
∂t

= ∂u
∂t
, which implies in

turn that ([·] denoting dimension):

[

∂p

∂t

]

=

[

1

|p|
∂u

∂t

]

=

[

1√
u

∂u

∂t

]

. (23)

Relation (23) suggests to take for γ the square root of one of the three natural means of a
and b, that is

γ1 =

√

a+ b

2
, γ2 =

4
√
ab and γ3 =

√

2ab

a+ b
.

Other mean values make sense, the simplest one being γ4 = (
√
a +

√
b)/2. Actually before

any testing to justify this choice, we like γ2.
In order to solve the initial value problem (20)-(21) for t varying from 0 to +∞, we are

going to employ a symmetrized operator splitting scheme reminiscent of the one introduced
by Strang in [37] (see also [6] and [9]). This will be discussed in the following section.

4 An operator-splitting scheme for the time discretiza-

tion of problem (20)-(21)

For the time-discretization of the initial value problem (20)-(21), we suggest the following
symmetrized operator-splitting scheme, where ∆t (> 0) is a time discretization step and
where tn+α denotes (n+ α)∆t; the other notation is classical. Taking into account (18) and
(19) we may time-discretize (20)-(21) as follows (other schemes are possible as shown in
Remark 4.1):

{y0,p0} = {y0,p0} , u0 = u0 (24)

(we have thus p0 = ∇y0).
For n ≥ 0, the time marching from {yn,pn, un} → {yn+1,pn+1, un+1} can be carried out

as follows. We first solve the following elliptic variational inequalities:











yn+1/2 ∈ V +
0 ,

∫

Ω
∇yn+1/2−p

n

∆t/2
· ∇(z − yn+1/2)dx+ ǫ1

∫

Ω
∇2yn+1/2∇2(z − yn+1/2)dx+

∫

Ω
∇yn+1/2 · ∇(z − yn+1/2)dx+ C

∫

Γ
(yn+1/2 − yd)(z − yn+1/2)dΓ ≥ 0 , ∀z ∈ V +

0 ,

(25)

and, with pn+1/2 = ∇yn+1/2,










un+1/2 ∈ K̃ ,
1
γ

∫

Ω
un+1/2−un

∆t/2
(v − un+1/2)dx+ 1

2ǫ3

∫

Ω
(un+1/2 − |pn+1/2|2)(v − un+1/2)dx

−1
2

∫

Ω
(v − un+1/2)dx ≥ 0 , ∀v ∈ K̃ ,

(26)
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then
{

p̂n+1/2 ∈ (L4(Ω))
d
,

∫

Ω
p̂
n+1/2−p

n+1/2

∆t
· qdx+ 1

ǫ3

∫

Ω
(|p̂n+1/2|2 − un+1/2)p̂n+1/2 · qdx = 0 , ∀q ∈ (L4(Ω))

d
,
(27)

{

ûn+1/2 ∈ H1(Ω) ,
1
γ

∫

Ω
ûn+1/2−un+1/2

∆t
vdx+ ǫ2

∫

Ω
∇ûn+1/2 · ∇vdx = 0 , ∀v ∈ H1(Ω) ,

(28)

and finally











yn+1 ∈ V +
0 ,

∫

Ω
∇yn+1−p̂

n+1/2

∆t/2
· ∇(z − yn+1)dx+ ǫ1

∫

Ω
∇2yn+1∇2(z − yn+1)dx+

∫

Ω
∇yn+1 · ∇(z − yn+1)dx+ C

∫

Γ
(yn+1 − yd)(z − yn+1)dΓ ≥ 0 , ∀z ∈ V +

0 ,

(29)

and, with pn+1 = ∇yn+1,










un+1 ∈ K̃ ,
1
γ

∫

Ω
un+1−ûn+1/2

∆t/2
(v − un+1)dx+ 1

2ǫ3

∫

Ω
(un+1 − |pn+1|2)(v − un+1)dx

−1
2

∫

Ω
(v − un+1)dx ≥ 0 , ∀v ∈ K̃ .

(30)

Remark 4.1: A variant of scheme (24)-(30) is obtained by replacing (27)-(28) by

{

ûn+1/2 ∈ H1(Ω) ,
1
γ

∫

Ω
ûn+1/2−un

∆t
vdx+ ǫ2

∫

Ω
∇ûn+1/2 · ∇vdx = 0 , ∀v ∈ H1(Ω) ,

(31)

{

p̂n+1/2 ∈ (L4(Ω))
d
,

∫

Ω
p̂
n+1/2−p

n+1/2

∆t
· qdx+ 1

ǫ3

∫

Ω
(|p̂n+1/2|2 − ûn+1/2)p̂n+1/2 · qdx = 0 , ∀q ∈ (L4(Ω))

d
.
(32)

Remark 4.2: Another variant of scheme (24)-(30) is obtained by imposing the condition
y(xs, t) = 0 only once per time step. In that case we suggest keeping it in (25) (for regularity
reasons). In that case, one has to replace V +

0 in (29) by the convex set {z : ∇2z ∈ L2(Ω), z ∈
W 1.4(Ω), z ≥ 0}.

We are going to discuss the solution of the sub-problems encountered at the fractional
steps of scheme (24)-(30) (the solution methods to be discussed still apply if one replaces
(27)-(28) by (31)-(32)).

4.1 Solving the nonlinear subproblems (26) and (30)

Dropping the super-scripts shows that both problems (26) and (30) are particular cases of

{

u ∈ K̃ ,
∫

Ω
(u− w)(v − u)dx+ γ ∆t

4ǫ3

∫

Ω
(u− |p|2)(v − u)dx− γ∆t

4

∫

Ω
(v − u)dx ≥ 0 , ∀v ∈ K̃ .

(33)
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It follows from [7] that (33) characterizes u as the unique solution of the following con-
strained minimization problem:

{

find u ∈ K̃ such that

j1(u) ≤ j1(v) , ∀v ∈ K̃ ,
(34)

where

j1(v) =
1

2

(

1 + γ
∆t

4ǫ3

)
∫

Ω

|v|2dx−
∫

Ω

(

w + γ
∆t

4ǫ3
|p|2 + γ

∆t

4

)

vdx , (35)

with the functions w and p given.
The functional j1 can be minimized pointwise over Ω; doing so we obtain

u(x) = inf

[

b, sup

(

a,
w(x) + γ ∆t

4ǫ3
|p(x)|2 + γ∆t

4

1 + γ ∆t
4ǫ3

)]

, a.e. on Ω . (36)

4.2 Solving the nonlinear subproblem (27)

Problem (27) is a particular case of
{

p ∈ (L4(Ω))
d
,

∫

Ω

(

1− ∆t
ǫ3
u
)

p · qdx+ ∆t
ǫ3

∫

Ω
|p|2 p · qdx =

∫

Ω
r · qdx , ∀q ∈ (L4(Ω))

d
,

(37)

where u and r are two given functions with a ≤ u ≤ b as defined above. Suppose that

∆t ≤ ǫ3
b
; (38)

then the nonlinear variational problem (37) has a unique solution (actually, we can easily

show that if r belongs to (L4(Ω))
d
, which is clearly the case if r = pn+1/2, then p belongs to

(L6(Ω))
d
).

Formulation (37) implies that
(

1− ∆t

ǫ3
u(x)

)

p(x) +
∆t

ǫ3
|p(x)|2p(x) = r(x) , a.e. in Ω . (39)

Problem (39) can be solved point-wise. Indeed, since 1 − ∆t
ǫ3
u(x) ≥ 0, a.e. in Ω (from

(38)), we observe that |p(x)| is the unique solution (necessarily non-negative) of the cubic
equation:

(

1− ∆t

ǫ3
u(x)

)

z +
∆t

ǫ3
z3 = |r(x)| . (40)

Once |p(x)| is known, it follows from (39) that

p(x) =
r(x)

(

1− ∆t
ǫ3
u(x)

)

+ ∆t
ǫ3
|p(x)|2

, a.e. in Ω . (41)

To solve the cubic equation (40), we advocate using the Newton’s method initialized by
3
√

ǫ3
∆t
|r(x)|.
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4.3 Solving the linear subproblem (28)

Problem (28) is a particular case of

{

u ∈ H1(Ω) ,
∫

Ω
uvdx+∆tǫ2

∫

Ω
∇u · ∇vdx =

∫

Ω
wvdx , ∀v ∈ H1(Ω) ,

where w is a given function. Actually, this problem is nothing but the variational formulation
of the following very classical Neumann problem

{

u−∆tǫ2∇2u = w in Ω ,
∂u
∂n

= 0 on Γ .
(42)

4.4 Solving the linear subproblems (25) and (29)

Since we decided not to take the positivity of y into account, the variational inequalities (25)
and (29) reduce (formally) to linear variational problems of the following type:











y ∈ Z0 ,
(

1 + ∆t
2

) ∫

Ω
∇y · ∇zdx+ ∆t

2
ǫ1
∫

Ω
∇2y∇2zdx+ ∆t

2
C
∫

Γ
yzdΓ =

∫

Ω
p · ∇zdx+ ∆t

2
C
∫

Γ
gzdΓ , ∀z ∈ Z0 ,

(43)

where p and g are given functions and Z0 = {z : z ∈ H2(Ω), z(xs) = 0}. Actually, associating
with the relation y(xs) = 0 a Lagrange multiplier, there is equivalence between (43) and the
variational system:



















{y, λ} ∈ H2(Ω)× R ,
(

1 + ∆t
2

) ∫

Ω
∇y · ∇zdx+ ∆t

2
ǫ1
∫

Ω
∇2y∇2zdx+ ∆t

2
C
∫

Γ
yzdΓ =

∫

Ω
p · ∇zdx+ ∆t

2
C
∫

Γ
gzdΓ + λz(xs) , ∀z ∈ H2(Ω) ,

y(xs) = 0 .

(44)

The above formulation makes sense since, if d = 1, 2 and 3, the injection of H2(Ω) into
C0(Ω̄) is compact.

In order to solve (43), we are going to identify the elliptic equation verified by the unique
solution of (43) and the associated boundary conditions. The usual approach, is to take, in
(44), z in the space D(Ω) (⊂ H2(Ω)) of the C∞ functions with compact support in Ω. We
have then, since z = 0 on Γ,

(

1 +
∆t

2

)
∫

Ω

∇y · ∇zdx+
∆t

2
ǫ1

∫

Ω

∇2y∇2zdx =

∫

Ω

p · ∇zdx+ λz(xs) , ∀z ∈ D(Ω) .

(45)
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It follows from (45) that y is solution, in the sense of distributions, of

−
(

1 +
∆t

2

)

∇2y +
∆t

2
ǫ1∇4y = −∇ · p+ λδ(xs) , (46)

where δ(xs) is the Dirac measure at xs. In order to recover the boundary conditions associated
with the bi-harmonic equation (46) we multiply both sides of (46) by z in H2(Ω) and apply
(formally) Green’s formulas; we obtain first

−
(

1 +
∆t

2

)
∫

Ω

∇2yzdx+
∆t

2
ǫ1

∫

Ω

∇4yzdx = −
∫

Ω

∇ · pzdx+ λz(xs) , (47)

and then, from (47):

(

1 +
∆t

2

)
∫

Ω

∇y · ∇zdx−
(

1 +
∆t

2

)
∫

Γ

∂y

∂n
zdΓ +

∆t

2
ǫ1

∫

Ω

∇2y∇2zdx+
∆t

2
ǫ1

∫

Γ

∂∇2y

∂n
zdΓ− ∆t

2
ǫ1

∫

Γ

∇2y
∂z

∂n
zdΓ =

∫

Ω

p · ∇zdx−
∫

Γ

p · nzdΓ + λz(xs) , ∀z ∈ H2(Ω) . (48)

Comparing relations (44) and (48) yields

(

1 +
∆t

2

)
∫

Γ

∂y

∂n
zdΓ− ∆t

2
ǫ1

∫

Γ

∂∇2y

∂n
zdΓ +

∆t

2
ǫ1

∫

Γ

∇2y
∂z

∂n
zdΓ−

∫

Γ

p · nzdΓ =
∆t

2
C

∫

Γ

(g − y)zdΓ , ∀z ∈ H2(Ω) , (49)

where, in (49), n is the outward to Ω unit normal vector at Γ. Since z|Γ and ∂z
∂n

∣

∣

Γ
can be

arbitrary in the boundary spaces H3/2(Γ) and H1/2(Γ), respectively, it follows from (49) that
the solution y of problem (44) verifies the following system of boundary conditions:

{

(

1 + ∆t
2

)

∂y
∂n

− ∆t
2
ǫ1

∂∇2y
∂n

+ C∆t
2
y = C∆t

2
g + p · n on Γ ,

∇2y = 0 on Γ .
(50)

Collecting the above results shows that the pair {y, λ} solution of the variational system
(44) is also the solution of the following bi-harmonic boundary value problem:



















−
(

1 + ∆t
2

)

∇2y + ∆t
2
ǫ1∇4y = −∇ · p+ λδ(xs) in Ω ,

(

1 + ∆t
2

)

∂y
∂n

− ∆t
2
ǫ1

∂∇2y
∂n

+ C∆t
2
y = C∆t

2
g + p · n on Γ ,

∇2y = 0 on Γ ,

y(xs) = 0 .

(51)
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Solving problem (51) is the only non-trivial part of our methodology; the boundary con-
ditions in particular look frightening. Actually the bi-harmonic problem (51) is (relatively)
easy to solve, the trick being to introduce the function ω = −∇2y. Then, problem (51) is
equivalent to the following system

{

(

1 + ∆t
2

)

ω − ∆t
2
ǫ1∇2ω = −∇ · p+ λδ(xs) in Ω ,

ω = 0 on Γ ,
(52)











−∇2y = ω in Ω ,
(

1 + ∆t
2

)

∂y
∂n

+ C∆t
2
y = C∆t

2
g + p · n− ∆t

2
ǫ1

∂ω
∂n

on Γ ,

y(xs) = 0 .

(53)

The boundary condition verified by y in (53) is of Robin type. The two elliptic problems
in (52)-(53) are classical ones; they are well-suited for finite element based solution methods.
Of course, an important issue is the adjustment of λ in (52)-(53); this issue will be discussed
in Section 4.5, below.

Remark 4.3: An equivalent variational formulation of problem (53) reads as follows:



















y ∈ H2(Ω) ,
(

1 + ∆t
2

) ∫

Ω
∇y · ∇zdx+ C∆t

2

∫

Γ
yzdΓ = C∆t

2

∫

Γ
gzdΓ +

∫

Ω
p · ∇zdx

−ǫ1
∆t
2

∫

Ω
∇ω · ∇zdx+ λz(xs) , ∀z ∈ H2(Ω) ,

y(xs) = 0 .

(54)

Once ω is known, computing y via (54) is rather simple.
Remark 4.4: The computed y in equation (53) is the approximate traveltime solving

the eikonal equation equipped with the currently reconstructed velocity at the current point
source xs, and this traveltime is not the same as the viscosity solution obtained by solving
the eikonal equation directly using the currently available velocity.

4.5 Adjusting λ in (52) and (53)

The solution y of (52)-(53) is an affine function of λ. Indeed, we have:

y = Y0 + λȳ1 , (55)
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with Y0 and ȳ1 the solutions of

{

(

1 + ∆t
2

)

ω0 − ∆t
2
ǫ1∇2ω0 = −∇ · p in Ω ,

ω0 = 0 on Γ ,
(56)

{

−∇2Y0 = ω0 in Ω ,
(

1 + ∆t
2

)

∂Y0

∂n
+ C∆t

2
Y0 = C∆t

2
g + p · n− ∆t

2
ǫ1

∂ω0

∂n
on Γ ,

(57)

{

(

1 + ∆t
2

)

ω̄1 − ∆t
2
ǫ1∇2ω̄1 = δ(xs) in Ω ,

ω̄1 = 0 on Γ ,
(58)

{

−∇2ȳ1 = ω̄1 in Ω ,
(

1 + ∆t
2

)

∂ȳ1
∂n

+ C∆t
2
ȳ1 = −∆t

2
ǫ1

∂ω̄1

∂n
on Γ .

(59)

From (55) the value of λ is given by

λ = −Y0(xs)

ȳ1(xs)
. (60)

Remark 4.4. If one keeps ∆t independent of n, we just need to compute ω0 and Y0 (twice)
at each time step of the operator-splitting scheme (24)-(30). The functions ω̄1 and ȳ1 being
independent of p, and therefore of n, can be computed once for all. Actually, we just need
to store ȳ1.

A most important issue we still have to address is the initialization of the operator-
splitting scheme (24)-(30). This will be done in Section 4.6.

4.6 On the initialization of the operator-splitting scheme (24)-(30)

Since we want to simplify our lives by not imposing explicitly the condition y ≥ 0, picking a
proper initialization in (24) is a most important issue. Using dimensionality arguments we
suggest to define y0 as the solution of the following bi-harmonic problem

{

dD∇4y0 −∇2y0 = f + λ0δ(xs) in Ω ,

y0 = g on Γ , ∇2y0 = 0 on Γ , y0(xs) = 0 ,
(61)

and to take
p0 = ∇y0 . (62)

In (61), we have

• D is the diameter of Ω, while d is a small scale characteristic length. Anticipating on
the space discretization discussion, we suggest to take for d the space discretization
step h.
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• The function f is a constant function given by

f =

√

1

2
(a+ b)Λ1 , (63)

where Λ1 is the smallest eigenvalue of −∇2 operating on H1
0 (Ω). If Ω is the rectangle

(0, L1)× (0, L2) we have Λ1 = π2
(

L−2
1 + L−2

2

)

= (πD/|Ω|)2, with |Ω| = measure of Ω.

Concerning u0 one can take

u0 =
1

2
(a+ b) , (64)

but other choices (based on other mean values) are possible.
To solve (61), we suggest the following approach, inspired from Section 4.5:

(i) Solve:

{

ω0 − dD∇2ω0 = f in Ω ,

ω0 = 0 on Γ ,
(65)

{

−∇2Y0 = ω0 in Ω ,

Y0 = g on Γ ,
(66)

{

ω1 − dD∇2ω1 = δ(xs) in Ω ,

ω1 = 0 on Γ ,
(67)

{

−∇2Y1 = ω1 in Ω ,

Y1 = g on Γ .
(68)

(ii) Compute

λ0 = −Y0(xs)

Y1(xs)
.

(iii) Finally, set
y0 = Y0 + λ0Y1 . (69)

Remark 4.5. There are some brute force methods to impose the positivity of the solution,
but we would prefer not to use them since they would affect the regularity of the solutions
(but we known they are here, if needed).

5 Multiple Sources and Partial Measurements

In this section, we consider practical situations: multiple sources and partial measurements.
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5.1 Multiple sources

Assuming that a set of point sources located at x
(i)
s gives rise to corresponding traveltime

measurement y
(i)
d on Γ, where i = 1, 2, · · · , N , following the discussion in Section 2 the

inverse problem is to find a function copt of x so as to minimize the cost function

J(c) =
1

2N

N
∑

i=1

∫

Γ

|z(i) − y
(i)
d |2dΓ , ∀c ∈ C ,

where z(i) is the solution to the eikonal equation satisfying z(x
(i)
s ) = 0. Accordingly, we

modify the functional jǫC to take into account the information of multiple sources,

jǫC(z
(1), · · · , z(N), v)

=
ǫ1
2N

N
∑

i=1

∫

Ω

|∇2z(i)|2dx+
1

2N

N
∑

i=1

∫

Ω

|∇z(i)|2dx+
C

2N

N
∑

i=1

∫

Γ

|z(i) − y
(i)
d |2dΓ +

+
ǫ2
2

∫

Ω

|∇v|2dx− 1

2

∫

Ω

vdx+
1

4Nǫ3

N
∑

i=1

∫

Ω

∣

∣|∇z(i)|2 − v
∣

∣

2
dx . (70)

This functional can be minimized by solving a modified optimality system analogous to
problems (20) and (21). Since each point source is independent of other sources, we can
simply solve the initial value problem (20) N times by replacing y(t) by y(i)(t), p(t) by

p(i)(t), and the measurements yd by y
(i)
d associated to each x

(i)
s . Meanwhile, we modify

problem (21) to be






















letting u(0) = u0(∈ K) ,

find u(t) ∈ H1(Ω) for t ∈ (0,∞) such that
1
γ

∫

Ω
∂u(t)
∂t

vdx+ ǫ2
∫

Ω
∇u(t) · ∇vdx+ 1

2Nǫ3

∑N
i=1

∫

Ω
(u(t)− |p(i)(t)|2)vdx

−1
2

∫

Ω
vdx+ 〈∂IK̃(u(t)), v〉 = 0 , ∀v ∈ H1(Ω) .

(71)

Therefore, the nonlinear subproblems (26) and (30) reduce to










u ∈ K̃ ,
∫

Ω
(u− w)(v − u)dx+ γ ∆t

4Nǫ3

∑N
i=1

∫

Ω
(u− |p(i)|2)(v − u)dx

−γ∆t
4

∫

Ω
(v − u)dx ≥ 0 , ∀v ∈ K̃ ,

(72)

which leads to

u(x) = inf

[

b, sup

(

a,
w(x) + γ ∆t

4Nǫ3

∑N
i=1 |p(i)(x)|2 + γ∆t

4

1 + γ ∆t
4ǫ3

)]

, a.e. on Ω . (73)

The rest of the tomography algorithm will stay the same. The computational complexity for
each time marching iteration from {yn,pn, un} to {yn+1,pn+1, un+1} will be approximately
linearly proportional to the number of point sources N .
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5.2 Partial measurements

When measurements are only available on a subset Γ′ ⊂ Γ, where Γ denotes the whole
boundary of Ω, we propose to modify the matching term C

2

∫

Γ
|z − yd|2dΓ to be

1

2

∫

Γ

C · 1Γ′ · |z − yd|2dΓ ,

where 1Γ′ defined on the whole set Γ is the characteristic function of the set Γ′. In the
numerical implementation, we only need to slightly modify the code by replacing the constant
C in (53) by C · 1Γ′ which is a function defined on Γ. The whole algorithm follows.

6 Numerical Experiments

The purpose of numerical experiments is to assess effectiveness of the new algorithm on the
boundary rigidity problem, namely, the first-arrival based traveltime tomography problem.
As we know from [21, 20, 22, 24, 34], the 2-D boundary rigidity problem has a unique
solution up to diffeomorphism if the underlying metric is simple. Therefore, we will show
two examples to demonstrate that the algorithm can reconstruct the underlying velocity if
indeed the underlying metric (velocity) is simple. However, when the underlying metric is
not simple, the situation is much more complicated, and the first-arrival traveltime may not
carry information for certain interior regions so that the reconstructed velocity model has
very limited resolution, and this is demonstrated in two examples with non-simple metrics.

To fully appreciate the algorithm, we will first assume an ideal situation where receivers
are located on the whole boundary of the computational domain; namely, we will consider
the full-aperture case. Numerically, we will assume that receivers are located at mesh points
on the boundary of the domain so that we can use the fast sweeping method to time those
receivers, and these traveltime data on the boundary are further used in the new tomog-
raphy algorithm as the input data. Furthermore, to deal with practical situations, we will
also demonstrate several cases where measurements are given only on a part of the whole
boundary of the computational domain.

The overall algorithm is implemented based on finite-difference methods, and the free
parameters in the algorithm are chosen to be ǫ1 = 0.01, ǫ2 = 0.1, ǫ3 = 0.01, and C = 1000.

6.1 A constant model

In this example, the velocity model is constant, c(x, y) ≡ 1, which yields a simple metric.
The computational domain is Ω = (−1, 1)2. We consider three sets of sources. In the case of
only one source, the point source is located at (xs, ys) = (0,−0.5). In the case of five point
sources, they are located at (xs, ys) = (0,−0.5), (xs, ys) = (±0.4,−0.5), and (±0.8,−0.5).
In the case of ten point sources, they are located at (xs, ys) = (0,±0.5), (±0.4,±0.5), and
(±0.8,±0.5).
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Numerically, we implement the algorithm on different discretized meshes: ∆x = ∆y =
1/16, 1/32, 1/64, and 1/128, respectively. According to the given discretized mesh, we solve
the eikonal equation by the fast sweeping method with a mesh of 10 times finer so that the
receivers at boundary mesh points are assigned first-arrival traveltimes.
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Figure 1: (Constant Model) Cross sections of the reconstructed velocity along (a) x = 0, (b)
y = −0.5, (c) y = 0, and (d) y = 0.5.

Figure 1 and 2 show the results on a mesh of size ∆x = ∆y = 1/128. Figure 1 shows the
sliced comparisons between the exact velocity model and the reconstructed (inverted) veloc-
ity model corresponding to different sets of sources. As we can see, the reconstructed velocity
model converges to the exact solution as the number of sources increases. Figure 2 shows
the sliced comparison between the “exact” traveltime (corresponding to solving the eikonal
equation with the exact velocity at the point source (0,−0.5)) and the approximate (“in-
verted”) traveltime (corresponding to the currently reconstructed velocity model associated
to the source (0,−0.5)). As can be observed from the figure, the approximate traveltime as
a by-product of the new tomography algorithm matches with the exact traveltime very well,
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Figure 2: (Constant Model) Cross sections of the exact traveltime and the approximate
traveltimes from the point source located at (0,−0.5) along (a) x = 0, (b) y = −0.5, (c)
y = 0 and (d) y = 0.5.

implying that the traveltime data are fit very well; in turn, this implies that the underlying
velocity model is well recovered as well since the constant isotropic metric is simple.

In Figures 3 and 4, we assume that the measurements are given only along y = 1. Since
the available information is reduced, we expect that the reconstructed solutions should be
less accurate. However, as we increase the number of point sources or refine the underlying
mesh, the inverted solutions do match better with the exact solution.

To appreciate the convergence behavior of the new tomography algorithm in terms of
mesh sizes, we check the L2-error of the velocity model and the averaged L2-error of the
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traveltime functions, and these two errors are defined as the following:

Evel(∆x) =

(
∫

Ω

∣

∣

∣
cexact − ccomputed

∣

∣

∣

2

dx

)1/2

,

Etra(∆x) =
1

N

(

N
∑

i=1

∫

Ω

∣

∣

∣
T i
exact − T i

computed

∣

∣

∣

2

dx

)1/2

, (74)

where cexact is the exact velocity model, ccomputed is the reconstructed velocity model,

T i
exact is the exact traveltime at the source i, T i

computed is the approximate traveltime from

the tomography algorithm at the source i, and N is the total number of sources.
Both Figures 5(a) and 5(b) indicate that while keeping the number of sources fixed,

increasing the number of receivers (data points located at mesh points on the boundary)
allows us to decrease the L2-fitting errors more. At the same time, these figures also show
that increasing the number of sources also allow us to decrease L2-fitting errors while keeping
the number of receivers fixed. Figures 5(c) and 5(d) show the error in the solution when
measurements are given only on y = 1.

6.2 A linear model

In this example, we consider a linear velocity model: c(x, y) = 2 + y. The computational
domain is Ω = (−1, 1)2. We consider three sets of sources. In the case of only one source,
the point source is located at (xs, ys) = (0,−0.5). In the case of five point sources, they are
located at (xs, ys) = (0,−0.5), (xs, ys) = (±0.4,−0.5), and (±0.8,−0.5). In the case of ten
point sources, they are located at (xs, ys) = (0,±0.5), (±0.4,±0.5), and (±0.8,±0.5).

Numerically, we implement the algorithm on a mesh of 41-by-41. Measurements are
obtained by solving the eikonal equation using the fast sweeping method on a mesh of 401-
by-401. The results are shown in Figure 6 and Figure 7.

Figure 6 shows the sliced comparisons between the exact velocity model and the recon-
structed (inverted) velocity model corresponding to different sets of sources. As we can see,
the reconstructed velocity model converges to the exact solution as the number of sources in-
creases. Figure 7 shows the sliced comparison between the “exact” traveltime (corresponding
to solving the eikonal equation with the exact velocity at the point source (0,−0.5)) and the
approximate (“inverted”) traveltime (corresponding to the currently reconstructed velocity
model associated to the source (0,−0.5)). As can be observed from the figure, the approxi-
mate traveltime as a by-product of the new tomography algorithm matches with the exact
traveltime very well, implying that the traveltime data are fit very well; in turn, this implies
that the underlying velocity model is well recovered as well since the underlying metric in
the bounded domain is simple.

To appreciate the convergence behavior of the new tomography algorithm in terms of
mesh sizes, we check the L2-error of the velocity model and the averaged L2-error of the
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Figure 3: (Constant Model) Cross sections of the reconstructed velocity along (a) x = 0, (b)
y = −0.5, (c) y = 0, and (d) y = 0.5 using measurements along y = 1 only.

traveltime functions as defined in equation (74). The different discretized meshes are defined
by ∆x = ∆y = 1/16, 1/32, 1/64, and 1/128, respectively, and the results are shown in
Figure 8. The figures in Figure 8 indicate that while keeping the number of sources fixed,
increasing the number of receivers (data points located at mesh points on the boundary)
allows us to decrease the L2-fitting errors more. At the same time, the two figures also show
that increasing the number of sources also allow us to decrease L2-fitting errors while keeping
the number of receivers fixed.

6.3 A sinusoidal model

This example is adapted from the sinusoidal waveguide model proposed in [38, 25], and the
velocity function is given by

c(x, y) = 1 + 0.2 sin[0.5π(y + 1)] sin[3π(x+ 0.55)] .
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Figure 4: (Constant Model) Cross sections of the exact traveltime and the approximate
traveltimes from the point source located at (0,−0.5) along (a) x = 0, (b) y = −0.5, (c)
y = 0 and (d) y = 0.5 using measurements along y = 1 only.

As illustrated in [38, 25], this model shows multiple arrivals and caustics for many source-
receiver setups so that the underlying metric is not simple. Therefore, this example serves to
illustrate the performance of the new tomography algorithm to recover non-simple metrics
by using only first-arrivals.

The computational domain is Ω = (−1, 1])2. We consider four sets of sources. In the case
of only one source, the point source is located at (xs, ys) = (0,−0.75). In the case of five point
sources, they are located at (xs, ys) = (0,−0.75), (xs, ys) = (±0.4,−0.75), and (±0.8,−0.75).
In the case of ten point sources, they are located at (xs, ys) = (0,±0.75), (±0.4,±0.75), and
(±0.8,±0.75). Finally, when we consider the case with eighteen sources, we further add
eight more sources at (xs, ys) = (±0.2,±0.75) and (±0.6,±0.75) to the case of ten sources.

Numerically, we implement the algorithm on different discretized meshes: ∆x = ∆y =
1/16, 1/32, 1/64, and 1/128, respectively. According to the given discretized mesh, we solve
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Figure 5: (Constant model) Error in the reconstructed velocity and the approximate trav-
eltime fields using (a) five and (b) ten point sources with complete measurements. Error in
the reconstructed velocity and the approximate traveltime fields using (c) five and (d) ten
point sources with measurements along y = 1 only.

the eikonal equation by the fast sweeping method with a mesh of 10 times finer so that the
receivers at boundary mesh points are assigned first-arrival traveltimes.

Figure 9 shows the results on the mesh of ∆x = ∆y = 1/128 for the case of the single
point source at (xs, ys) = (0,−0.75). In this case, the velocity model is not reconstructed
well, though the approximate traveltime is reasonably analogous to the “exact” first-arrival
traveltime at the point source at (xs, ys) = (0,−0.75).

Figure 10 shows the results on the mesh of ∆x = ∆y = 1/128 for the case of 18 sources.
As we can see, the multiple sources based tomography yields a velocity model with much
high resolution in comparison to the one-source based tomography. However, because the
underlying velocity model is not simple, the first-arrival based tomography yields limited
resolution. In terms of traveltimes, we compare that obtained by the direct eikonal solver
with that obtained by the tomography algorithm at the point source (xs, ys) = (0,−0.75),
and the two traveltimes are qualitatively similar.

To further check if the solution will be improved by refining the mesh in general, we
compute the L2-error (74) for the sinusoidal model in Figure 11. Similar to the linear
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Figure 6: (Linear Model) Cross sections of the reconstructed velocity along (a) x = 0, (b)
y = −0.5, (c) y = 0 and (d) y = 0.5.

model, the error decreases as we incorporate more measurements to the inverse problem by
increasing the number of mesh points.

To appreciate the convergence behavior of the new tomography algorithm in terms of
mesh sizes, we check the L2-error of the velocity model and the averaged L2-error of the
traveltime functions as defined in equation (74). The different discretized meshes are defined
by ∆x = ∆y = 1/16, 1/32, 1/64, and 1/128, respectively, and the results are shown in 11
which indicates that while keeping the number of sources fixed, increasing the number of
receivers (data points located at mesh points on the boundary) allows us to decrease the L2-
fitting errors more. At the same time, the two figures also show that increasing the number
of sources also allow us to decrease L2-fitting errors while keeping the number of receivers
fixed.
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Figure 7: (Linear Model) Cross sections of the exact traveltime and the approximate trav-
eltimes from the point source located at (0,−0.5) along (a) x = 0, (b) y = −0.5, (c) y = 0
and (d) y = 0.5.

6.4 The Marmousi model

This test case is the Marmousi model from the INRIAWorkshop on multi-arrival traveltimes.
The original Marmousi model is sampled on a 0.024km-by-0.024km grid, consisting of 384
samples in the x-direction and 122 samples in the y-direction. In the computational results
here, we use only a portion of the data, i.e. a window from 4.584km to 7.488km in the
x-direction and from 0km to 2.904km in the y-direction. We have carried out numerical
experiments for three different sets of sources. Using the standard MATLAB colon notation,
we place the first set of 10 point sources at (xs, ys) = (5.136 : 0.576 : 7.440, y1,2), where
y1 = 0.096 and y2 = 2.808. To increase the resolution in the solution, the second set of
sources consists of 20 sources located at (xs, ys) = (4.848 : 0.288 : 7.440, y1,2). The third
set of point sources consists of the second set and eight more point sources specified by
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Figure 8: (Linear model) Errors in the reconstructed velocity and the approximate traveltime
fields using (a) five and (b) ten point sources.

(xs, ys) = (4.848, 0.408 : 0.288 : 2.424).
As illustrated in [38, 25, 26], this model shows multiple arrivals and caustics for many

source-receiver configurations so that the underlying metric is not simple. Therefore, this
example serves to illustrate the performance of the new tomography algorithm to recover
non-simple metrics by using only first-arrivals.

Figure 12 shows the reconstructed solution for the third set of point sources with 28 point
sources, and we can see that the new tomography algorithm can only recover the velocity
field qualitatively well with the macroscopic scale captured correctly. However, because the
underlying velocity model is not simple, the first-arrival based tomography yields limited
resolution. In terms of traveltimes, we compare that obtained by the direct eikonal solver
with that obtained by the tomography algorithm at the point source (xs, ys) = (6.288, 0.096),
and the two traveltimes are qualitatively similar.

Moreover, we also compute the L2 error of the solution using (74) and we show these
errors in Table 1. By increasing the number of sources from 10 to 20, the mismatching errors
in the traveltime field are significantly reduced. However, since we are only using first-arrival
traveltimes for the inverse problem, we found that the algorithm can only recover the velocity
field qualitatively well with the macroscopic scale captured correctly. When we increase the
number of sources to 28, the extra information incorporated to the inverse problem does not
significantly further improve the resolution in the reconstructed velocity.

Number of sources 10 20 28
Evel 0.62941 0.62468 0.60780
Etra 1.12971 0.03696 0.03565

Table 1: Evel and Etra for the Marmousi model with different number of point sources.
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Figure 9: (Sinusoidal model) Reconstructed solutions using one point source at (xs, ys) =
(0,−0.75) on the mesh ∆x = ∆y = 1/128. (First row) The velocity and (second row) the
traveltime field.

6.5 Energy change

Figure 13 illustrates the changes in the energy during iterations for different models. For
all test examples, the algorithm converges in O(103) iterations. As we can see from these
energy plots which are in the log-log scale, the change in the energy can all be fitted by
straight lines. This exponential decay in the energy can be explained by the fact that the
overall algorithm is developed based on the idea of gradient flow.

7 Conclusion

A new methodology is developed for carrying out eikonal-based traveltime tomography aris-
ing from important applications such as seismic imaging and medical imaging. The new
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Figure 10: (Sinusoidal model) Reconstructed solutions using 18 point sources on the mesh
∆x = ∆y = 1/128. (First row) The velocity and (second row) the traveltime field corre-
sponding to the source (xs, ys) = (0,−0.75).

method formulates the traveltime tomography problem as a variational problem of a certain
cost functional explicitly with respect to both traveltime and sound speed. Furthermore,
the cost functional is penalized to enforce the nonlinear equality constraint associated with
the underlying eikonal equation, biharmonically regularized with respect to traveltime, and
harmonically regularized with respect to sound speed. To overcome the difficulty associated
with the inherent nonlinearity of the eikonal equation, the Euler-Lagrange equation of the
penalized-regularized variational problem is reformulated into an equivalent, mixed optimal-
ity system. This mixed system is associated with an initial value problem which is solved
by an operator-splitting based solution method, and the splitting approach effectively re-
duces the optimality system into three nonlinear subproblems and three linear subproblems.
Moreover, the nonlinear subproblems can be solved pointwise, and the linear subproblems
can be reduced to linear second-order elliptic problems. Numerical experiments show that
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Figure 11: (Sinusoidal model) Error in the reconstructed velocity and the approximate
traveltime field using (a) one and (b) eighteen point sources with complete measurements.
Error in the reconstructed velocity and the approximate traveltime field using (c) one and
(d) eighteen point sources with measurements on y = 1 only.

the new method can carry out traveltime tomography successfully and recover sound speeds
efficiently.
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