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Pseudo-Holomorphic Maps and Bubble Trees

By Thomas H. Parker and Jon G. Wolfson

ABsTRACT. This paper proves a strong convergence theorem for sequences of pseudo-holomorphic
maps from a Riemann surface to a symplectic manifold N with tamed almost complex structure.
(These are the objects used by Gromov to define his symplectic invariants.) The paper begins by
developing some analytic facts about such maps, including a simple new isoperimetric inequality and
a new removable singularity theorem.

The main technique is a general procedure for renormalizing sequences of maps to obtain “bubbles
on bubbles.” This is a significant step beyond the standard renormalization procedure of Sacks and
Uhblenbeck. The renormalized maps give rise to a sequence of maps from a “bubble tree”—a map from
a wedge &V S2V $?V ... — N. The main result is that the images of these renormalized maps
converge in L1:2 1 C¥ to the image of a limiting pseudo-holomorphic map from the bubble tree. This
implies several important properties of the bubble tree. In particular, the images of consecutive bubbles
in the bubble tree intersect, and if a sequence of maps represents a homology class then the limiting
map represents this class.

While the main focus is on holomorphic maps, the bubble tree construction applies to other
conformally invariant problems, including minimal surfaces and Yang-Mills fields.

Introduction

It has long been known that the space of solutions of many nonlinear elliptic differential
equations is noncompact in any reasonable topology. This is true, for example, for the space
of harmonic maps from the two-sphere to a Riemannian manifold. In 1979 Sacks and Uhlen-
beck proved an existence theorem for harmonic maps of two-spheres by exploiting precisely this
noncompactness. Their key observation was that the lack of compactness is associated with the
concentration of the energy density of solutions at isolated points and that, by using the conformal
invariance of the equations, one could renormalize the solutions around these points of concen-
tration to obtain other solutions. Their renormalization procedure is now known as “bubbling.”

The bubbling phenomenon has subsequently been recognized and studied in a wide variety of
other geometric differential equations, including the Yamabe equation, the Yang-Mills equation,
and the J-holomorphic map equation. Each case involves an elliptic equation whose nonlinear
terms are borderline for the Sobolev inequalities. It is well known that the basic Sacks—-Uhlenbeck
procedure applies to each.
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The Sacks—Uhlenbeck renormalization works well for existence theorems, but is flawed
as a convergence scheme: the rescaling pushes energy to infinity where it can be lost, so one
does not get convergence in the energy norm. This paper develops a new and more systematic
renormalization scheme. This scheme applies to any geometric problem where “bubbling” occurs.
In the cases where a suitable isoperimetric inequality holds, it gives convergence with no energy
loss. This yields a precise convergence result for sequences of solutions to the .J-holomorphic
map equation.

The main focus of this paper is on J-holomorphic maps. This is in keeping with our original
aim of proving and improving Gromov’s convergence results that are the crucial underpinning
of Gromov’s theory of J-holomorphic curves in symplectic manifolds [G]. This is one of the
simplest geometric contexts where bubbling occurs. Our renormalization scheme works nicely for
it and yields an elegant and complete proof of Gromov’s convergence statements.

To fix ideas, let (2, 7) be a compact Riemann surface with complex structure j and let
(N, J) be an almost complex manifold. A map f : ¥ — N is called j.J-holomorphic if

df o5 =J o df.

Given a compact symplectic manifold IV, Gromov chooses an almost complex structure J on
N compatible with the symplectic structure and considers the moduli space of j.J-holomorphic
maps representing a fixed homology class. The compatibility condition implies a uniform energy
bound on such maps. The issue of the compactness of the moduli space can then be formulated as
a convergence question: Let f,, : & — N be a sequence of 7./ holomorphic maps with bounded
energy. Does there exist a subsequence that converges in C' ! (or in some other topology) to a
4J-holomorphic map fy : 2 — N?

The analysis begins by showing that there is a subsequence of the { f,,} which converges in
C'" to a j.J-holomorphic map fy : ¥ — N. However this convergence is not on all of X but
rather on ¥ with a finite number of points {z;} deleted. The Sacks-Uhlenbeck method proceeds
by using a rescaling argument to construct at each x; a J-holomorphic map f,, from the two-
sphere into M/ —a bubble. The resulting “limit” of the subsequence is a J-holomorphic map from
the disjoint union of ¥ and a finite number of two-spheres into IV. This “Sacks—Uhlenbeck limit”
is the limit that is used in [W] to compactify moduli space. Notice that on the one hand the
bubbles f,, act as obstructions to C' ! convergence and on the other hand their absence implies
C'" convergence. Thus conditions on a moduli space that forbid the decomposition of maps into
a sum of J-holomorphic maps imply the C'' compactness of the moduli space. For this reason
the compactification of [W] is adequate for the applications of [G].

The Sacks—Uhlenbeck limit is not, however, the complete limit of the sequence { f,, }. The
occurence of “energy loss,” mentioned above, means that the sum of the energies of the limit
map fo and of all the bubbles may be less than the limit of the energies of the maps f,, of the
sequence. Similarly, the homology class of the maps f, may not be preserved in this limit, and
the image curve of the Sachs—Uhlenbeck limit map may not be connected.

s
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In this paper we modify the Sacks-Uhlenbeck construction, revising the renormalization
procedure so as to allow iteration. At each bubble point x; we construct a sequence of J-
holomorphic maps from the two-sphere into N with bounded energy. This sequence in turn has a
subsequence that converges in C'! (on the two-sphere with a finite number of points {y; } deleted)
to a J-holomorphic map f,, : S 2 — N. We then repeat our procedure at each y;. Interating, we
construct bubbles on bubbles on bubbles, etc. The result is a finite tower of bubbles, consisting
of a jJ-holomorphic map fo : ¥ — N and a collection of J-holomorphic maps from the
two-sphere to N (intrinsically, the two-spheres are fibers of compactified iterated tangent bundles
as described in Section 4). This collection has many beautiful properties which can be elegantly
described using the structure of a tree, as in Figure 1 below. In particular, both area and homology
are preserved by this limit and the image curve of the limit is connected.
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Figure 1.

Bubbling for J-holomorphic maps is a very real geometric phenomenon. For a simple ex-
ample, take the space X obtained by blowing up CP? at two points p and ¢. Then the projection
7 : X — CP?is a holomorphic isomorphism over CP*— {p, ¢}, and H,(X) = Z* is generated
by the standard line [L] and the exceptional curves E; = 7~ '(p) and E, = 77 '(¢). Now
consider a one-parameter family of lines f, : S? ~ CP! — CP? which miss p and ¢ for all
t > 0, but with fq passing through both p and ¢. For ¢ > 0 these lift to holomorphic maps
ft:S* = X. One can also lift fy: first remove = = f; ' (p) and y = f; ' (¢) and lift, obtaining
a map fo defined on S? — {z,y}; this extends to a holomorphic map fo : S* — X (the “strict
transform” of f) which intersects each exceptional curve in exactly one point. Clearly, as ¢ — 0
we have f, — fo in C* at all points on S? away from = and y. However, this family of maps
bubbles at the points = and y. This can be seen by considering homology classes. For ¢ > 0 fi
represents the homology class [L] € H>(X) . On the other hand, [ fo] projects to [L] € H,(CP?)
and satisfies [fo] - [F;] = 1 for 4 = 1,2. It follows (since [L] - [L] = 1 and [E}] - [E;] = —&;))
that [fo] = [L] — [Ei] — [E,]. Thus as ¢ — 0 the family {f,} bubbles according to the bubble
tree shown in Figure 2, where the g; : S*> — X are maps into the exceptional curves. It is easy to
elaborate on the example. Using maps of higher degree and blowing up at more points—including
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Figure 2.

points on exceptional curves—one obtains examples of complicated bubble trees (see [McD3] for
some interesting consequences of this idea).

Heuristically the sequence {f,} “converges” to a map f, from the bubble tree 7" into N.
It is difficult to make this convergence rigorous because the domain of the f, is X, not T". To
~ rectify this we use minimal surfaces to define, for each € > 0, a canonical surgery on each f,.
The result is a “prolongation” of f,, to a map P, (f,) from T to N. Although f, and P.(f,)
have different domains they are close in the sense that the difference in their energies goes to
zero as € goes to zero and their images coincide except on a finite number of e-balls. Our main
result, given in Section 6, shows that the P.( f,,) have good convergence properties.

Theorem 6.2. There is a sequence €, ™\, O such that a subsequence of
P.(fu): T — N
converges in C° N L2 to a smooth j.J-holomorphic map fy:T — N.

It follows that the areas of the f, converge to the area of fy and the images of the f,
converge pointwise to the image of fo. This last statement can be reformulated as a compactness
result for the space of unparameterized .J-holomorphic curves in N [G].

As mentioned earlier, our convergence theorem applies to other important conformally in-
variant geometric problems, such as harmonic maps, the Yamabe problem, and Yang-Mills. There
are some differences between these problems. The renormalization scheme and the contruction
of the bubble tree described in Section 4 applies to each of these. The associated bubble trees
are slightly more general than the one in Figure 1: one must include nonnegative constants ¢;
associated with each edge of the tree. This is because with each renormalization there may be
some energy caught between the bubbles. As shown in Lemma 5.1, this energy is carried by a
solution defined on an annular region. Thus the general bubble tree must include the energies of
both the bubbles and of these annular regions.

For sequences of .J-holomorphic maps it is proved in Section 5 that these annuli are mapped
onto “thin tubes” in the image and such tubes violate the isoperimetric inequality. Hence there
is no energy loss in this case (thus simplifying the bubble tree). This is a special feature of this
problem; the corresponding fact must be checked separately for each of the other conformally
invariant problems. In fact, one can show that energy loss does not occur for Yang-Mills with
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the consequential simplification in the bubble tree. On the other hand, energy loss does seem to
occur for some sequences of harmonic maps. This phenomenon should be studied further.

A number of authors have addressed various of the topics of this paper. The energy loss
phenomenon for harmonic maps was recognized and dealt with in previous works by ad hoc
methods (cf. [SY]). Recently, R. Ye [Y] has applied a similar technique to J-holomorphic maps
and independently obtained some of the results of this work. Taubes [T] has devised a method
for dealing with multiple bubbling in the Yang-Mills theory. We are indebted to J. D. Moore,
D. McDuff, and R. Ye for pointing out errors in preliminary versions of this paper. Finally we
direct the reader’s attention to Section 3, where a complete and simple proof of the removable
singularity theorem is given.

1. J-holomorphic maps

Let N be a closed symplectic manifold of dimension 27 with symplectic form w. An almost
complex structure on N is an endomorphism J : TN — TN satisfying J? = —Id.; this
is equivalent to a reduction of the Sp(2n) frame bundle to a U(n) bundle. Since U(n) is a
deformation retract of Sp(2n), the tangent bundle of (N, w) admits an almost complex structure
and any two such structures are homotopic. Let 3 be a closed Riemann surface of genus ¢ with
complex (conformal) structure 7. A map f : X — N is called jJ-holomorphic if

df o j = J o df. (1.1)

This is the Cauchy-Riemann equation for the map f; it is a first-order elliptic system. Each
solution f represents a class o € Hy(N,Z). We call f a j.J-holomorphic c-map and the image
of f a jJ-holomorphic a-curve.

Gromov’s idea is to obtain invariants of the symplectic manifold (N ,w) by choosing an
almost complex structure J and studying the space of holomorphic curves for various (X, 7). To
make this work, of course, we must choose a J that is related to the symplectic form w. There

are two ways of doing this.

An almost complex structure J on (N,w) is said to be w-tamed if w is positive on all J
complex lines in T'N, i.e., if

w(w,Jv) >0 YveTN wv#0. (1.2)
An almost complex structure J on (N, w) is called w-compatible if J satisfies (1.2) and
w(Ju, Jv) = w(u,v) forall u,v € TN. (1.3)

The spaces of all smooth w-tamed and w-compatible almost complex structures will be denoted
J(w) and J.(w) respectively. It is easy to see that both J(w) and J.(w) are nonempty and
connected.
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The advantage of imposing the additional condition (1.3) is to make contact with (almost)
hermitian geometry. For each J € J.(w) there is an associated hermitian metric & on N called
the J-compatible metric defined

h(u,v) = w(u, Jv). (1.4)
Note h is positive-definite by (1.2) and symmetric by (1.3). The Wirtinger inequality of Kihler

geometry applies to the triple (w, ./, h). Consequently, if f is a .J-holomorphic a-curve and
Area( f) is the area of the image of f with respect to the metric / then

Area(f):Ldvf*hzéf*w=/f(z)w= ([w], @), (1.5)

where [w] denotes the cohomology class of w and (, ) is the homology-cohomology pairing.
The number ([w], v) depends only on the symplectic form w. Thus for J € J,(w) (1.5) implies

(i) The area of a J-holomorphic c-curve is a symplectic invariant.

(i) A J-holomorphic curve is absolutely area minimizing in its homology class, and there-
fore its image is a minimal surface (for the J-compatible metric).

If J € J(w) then we proceed as follows. Let 7 be any hermitian metric on (N, J). Since
N is compact (1.2) implies that there is a constants ¢, C' > 0 such that

en(v,v) Lw(v, Jv) < Cn(v,v)  YveTN.
It is convenient to work with the hermitian metric & = ¢n, which satisfies (after renaming C")
h(v,v) <w(v,Jv) < Ch(v,v)  VYv € TN. (1.6)

This weakening of (1.4) turns out to be of no consequence in the theory. In particular, as we will
show in later sections, many results about minimal surfaces extend to tamed holomorphic maps.

For example, we can apply the above reasoning to (w, J, i) obtaining

Arean(f) < /ﬂz)w = ([w], @) < CArean(f) (1.7)

for a J-holomorphic a-curve f. These elementary considerations yield a fact that will be of
fundamental importance in later sections:

Proposition 1.1. For a tamed almost complex structure J and a hermitian metric h
satisfying (1.6):

(@) The space of J-holomorphic maps ¥ — N representing a class o € H,(N,Z)
satisfies a uniform h-area bound A depending only on w and o.
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(b) There is a constant By > 0 depending only on J, w, and h such that any smooth
J-holomorphic map f : ¥ — N, with Areay(f) < By is a map to a point.

Proof. Part (a) is clear from equation (1.7). Lemma 3.3 below implies that if Areay(f) is
sufficiently small then the image curve of f lies in a coordinate neighborhood and consequently
f represents the trivial element in homology. But then (1.7) shows that Area,(f) = 0, so f is a
map to a point.  [J

Remark. Theorem 3.3 in [SU] gives a similar statement for harmonic maps: there is a
constant By such that any harmonic or «-harmonic map f : ¥ — N with energy E(f) < By
is a map to a point.  [J

For unparameterized curves area is a natural notion, but for parameterized curves (maps) it is
more natural and technically more convenient to use energy. To do this, we choose a Riemannian
metric 1 on Y in the conformal class of 7. The energy of a map f : X — N is then

B(f) =5 [ 4P (18)

The integrand in this expression depends on the choice of the metric y, but F(f) depends only
on the conformal class j. Moreover, for J € J(w) a J-holomorphic map f : £ — (N, h) is
conformal in the sense that f*h is in the conformal class 7. Hence if f is a J-holomorphic map
then the energy of f for the metrics 4 and h equals the area of f measured with the metric A:

Arean(£) = B(f) = 5 [ 1P (1.9)

Consequently, for a metric on 3 in the conformal class 7 the uniform area bound of Proposition 1.1
gives a uniform energy bound.

We can now consider the space of all holomorphic maps. For this it is most convenient of
work with Sobolev spaces. Fix, once and for all, an integer s > 3. Let L*? be the Sobolev
space whose norm is the sum of the L? norms of the derivatives through order s. The Sobolev
embedding theorem shows that any L*? function on ¥ is C", and any L*™"~!? function on
N is C'. We can then complete the space Map(X, N) of all smooth maps f : ¥ — N in
the L*? norm, obtaining a smooth Hilbert manifold Map® (2, N) (this construction is standard
and functorial—see Palais [P]). In the same way we can use the L*t=12 norm to complete
J(w) and J.(w) to smooth Hilbert manifolds 7 *(w) and J.(w). With these definitions each
f € Map®(3, N) and each J € J*%(w) are C'..

For each homology class & € Hy(N,Z), each conformal structure j on ¥ and each J €
J*(w) we obtain a moduli space of J-holomorphic a-curves

Mo,s = {f € Map* (S, N) :dfoj = J o df}.
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By varying the conformal structure over the moduli space C, of conformal structures on % we
obtain a larger moduli space (depending on « and the genus g)

Mg = {(f>]) €Map*(E,N)xC, :df oj = Jodf}

and a fibration 7, : M, 4 ; — C, whose fibers are the M, ; ;. (Most of the following discussion
carries over to compact families of conformal structures, but additional complications arise as the
conformal structure approaches the boundary of Cy). The area bound of Proposition 1.1 implies
that the maps [ € M, ; ; have uniformly bounded area and hence uniformly bounded energy.
Our objective in this paper is to study the compactness properties of M, j,7. In particular we
ask:

Question. If { f,} is a sequence of j.J-holomorphic maps f : & — N for tamed .J, what
is the “limit” of {f,,}?
2. Elliptic estimates
Let & be a Riemann surface equipped with a metric 4 compatible with j. Let (N, .J) be

an almost complex manifold equipped with a hermitian metric /. Suppose that f : ¥ — N is a
JJ-holomorphic map. The differential of f extends to a complex linear map

df : TS®C —TNC.

We can decompose T2 @ C (resp. TN @ ©) into the %1 eigenspaces of j (resp. J) , which we
denote by 7% and T'Y (resp. PN and T%'N). Thus u € TS corresponds to

(%(1 —i7)u, %(1 + z’j)u) eTYS Ty,

Similarly, the differential decomposes as
df = of & df (2.1)

where 0f and O f are the restrictions of df to T'Y and T%!'% respectively. The condition (1.1)
that f is 7J-holomorphic then says that

1

af G(l - ij)u) = S0 = iT)df(u) € TN

df(%(l—i—ij)u) = %(l-}-i])df(u)ETo’lN. 2.2)



Pseudo-Holomorphic Maps and Bubble Trees 71

Thus

of :TYOY — TWN
af : Ty — TO'N, (2.3)

i.e., holomorphic maps preserve type. Moreover, for . € T"°% we have

0f (w) = 0f (u), (2.4)

so f determines Of.

To obtain estimates, we must differentiate these equations. We will do this using invariant
notation; the same computations are done in the appendix using moving frames. Choose a hermi-
tian connection V on N . This pulls back to a connection on f*T'N, which we will denote by
\v& or, when confusion is not possible, by V. The skew-symmetrization of the connection is an
operator

d¥ . QUf*TN) — Q*(f*TN). (2.5)
The restriction to 2% decomposes into the sum of a & and a O operator:
¥ =043 : QO TN) — QO(f*TN) & QW (f*TN). (2.6)

Since % is a Riemann surface there are no (2,0) forms, so 9V = 0. Because df € Q0 (f*T'N)
we have

v (af) =0 | (2.7)
and
2" (0f) = d%(9f). (2.8)

To compute (2.8) we first consider dV (df ) applied to X, Y € T'%:

I

d¥ (df)(X,Y) VxfoY) = Vy f(X) - f([X.Y])

(fTHXY) 2.9)
where 1 is the torsion tensor of V. Thus

d¥(df) = f*T. (2.10)
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Now, for X € T'X

Va0f) = x(30-i0d)
1 1 1
= va(df) - E(VXJ)?f - Ejvx(df)
= S0V ()~ SV @.11)

Combining (2.9) and (2.11) we have

3 (8f) =d7(8f) = %(l—iJ)f*T—%VJAdf

= (f*7)"° - %‘7] A df. (2.12)

Now let * be the Hodge star operator on . If £ € (T%)"" then *¢ = —i£. In particular,
*0f = —i0f. Thus when we apply the hermitian adjoint (0V)* = — % OV to f we obtain

OV)'(0f)=—#D *(3f) = i (3f)

= ix |(ffT)0 = =(VJ)Adf]. (2.13)

1
2

Note that the right-hand side of (2.13) is quadratic in df = 8f + df. Thus we can rewrite
equations (2.13) and (2.7) as

@%)of q(0f,0f)
vYof = o0 (2.14)

Il

where the coefficients of the quadratic ¢ depend linearly on 7" and VJ and therefore linearly on
J and VJ at the image point of f. These equations are an elliptic system for Jf. We can rewrite
them as a single equation by differentiating again and adding:

ATof = (9%(8%) +(9Y)"0%)0f = 0¥ (a(9f,0f)). (2.15)
Here A/ is the Hodge Laplacian; it depends on f because it involves the pullback connection.
Now differentiate the right-hand side of (2.15). As (2.14) is an elliptic system all derivatives of
df can be written as quadratic expressions in . Hence (2.15) becomes

Aldf =1(0f.0f,0f) (2.16)

where ? arises as the pullback of a tensor involving J and VJ. Now the Hodge Laplacian is half
the Laplacian d¥ (d¥)* 4+ (dV)*d" on 1-forms, so has a Bochner—Weitzenbock formula

207(0f) = V*V(0f) + K(0f) + R((9f), (9f))(0f) (2.17)
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where V*V is the trace Laplacian, K is (a constant times ) the Gauss curvature of ¥ and R is
the sectional curvature of the hermitian connection on N. Altogether, we have

VIV(Of) = —K(0f) + s((01),(91),(8f)) (2.18)

where s involves J, V.J, and R.

Theorem 2.1. (Regularity Theorem) Suppose (X, 7) and (N,w) are smooth and J €
T %2, Then any weakly jJ-holomorphic map f : ¥ — N that is L' for some p > 2, or is
C? for some o > 0, lies in L*?.

Proof. The Sobolev embedding implies that any f € L''F with p > 2 is Holder continuous,
so we can suppose that f is a C'“ solution of the weak elliptic equation (2.14), i.e.,

0= [((0% +(0%))6,00) ~ (£, BOS) ¥ € V(TN @ R(FTN)  (2.19)

where B = ¢(9f,-). The coefficient B is Holder continuous since f € C® and J and V.J
are C'! tensors on NN. Since regularity is local we can assume that ¢ has support on a small
ball in which we have a smooth moving frame {w,}. Then OV and (9V)* are components
of the covariant derivative, so are the ordinary 0 and O0* plus terms that are smooth functions
of f and df (cf. (A.8)). Theorem 1.11.1 in Morrey [M] then implies f € L*>? N C?®. But
then the right-hand side of the differentiated equation (2.18) lies in L*. In fact, using (A.8) we
can replace the covariant Laplacian with the ordinary Laplacian, moving all connection terms to
the right and still have the right-hand side in L*. Regularity for the Laplacian then means that
df € L** — C%, so f € CY“. Further regularity then follows by regarding (2.18) as a linear
equation whose coefficients are Holder continuous and applying standard bootstrap arguments,
such as [M] Theorem 5.6.3. Our hypothesis that J € J*2 means that s € L*?, so the bootstrap
argument stops once we have f € L*?. [

Lemma 2.2. Let f be a weak jJ-holomorphic map. Then the energy function e(f) =
ldf > = |0f > + |0f? = 2|0f? satisfies

Ae(f) < Cre(f) + Cae’(f) (2.20)

weakly. The constants Cy and C, depend only on the hermitian structures of 2 and N .

Proof. Since the connection is hermitian, we have

d(0f,0f) = (VOf,af) + (9f,Vaf). (2.21)
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Differentiating again and using (2.18) gives

d*de(f) = d*d(df, 0f) (V*Vaf,af) —2|VOf| + (9f, V' Vaf)
2(0NIIV*V(af)]
CilOf)P + Cal(ah)If

Cie(f) + Coe*(f). O (2.22)

(VAN VAN VA

The only condition on our choice of metric 4 on X is that its conformal class be the one
determined by j. When we replace 11 by a conformal metric A ™24 the pointwise energy rescales
by ex(f) = Ne(f) (where ey(f) is the energy function measured with respect to the metric
A~21) and the total energy E(Q) = [, ex(f) in any set €2 is invariant.

Theorem 2.3. (Main Energy Estimate) There exist constants C' and €y > 0, depending
only on J and the metric on X, such that whenever f : . — N is a C' J-holomorphic map
and D(2r) is a geodesic disk of radius 2r with E(2r) = fD(27*) e(f) < €, then

sup e(f) < —C—E@ (2.23)
D(r) r

Proof. Let py be a maximum of the function

flp)=r L up e(f).

(2r—2p)
Set

eo=sup e(f)
D(2r—2pg)

and let @y be a point such that e(zg) = eg. It follows that e(f) < ey pointwise in the disk
D = D(z, po). Switching to the metric 1’ = eou, D has radius R = pg\/eg, and €'(f) =
eg'e(f) < 1 pointwise on D. Hence by (2.27) €’ satifies (A’ — a)e’ < 0 where a = C + C).
The proof of Trudinger’s Mean Value Theorem ([GT] Theorem 9.20) shows that there is a constant
C' such that

¢ (z0) < 0(1+aRz)§12-/ .
D

Noting that ¢/(z9) = 1 and R* = pjeo and returning to the original metric,

ep < gz e+ CaegE(2r).
Po /D
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When E(2r) < ¢y = (2Ca) ™! we can rewrite this as

poeo < 2C e(f)
D(2r)

and hence f(p) < f(po) = pieo < 2CE(2r). The result follows by taking p = /2. [

Versions of the above proof can be found in [S] and [W].

3. Isoperimetric inequalities and removable singularities

In this section we prove a removable singularity theorem for J-holomorphic curves. Our
proof is based on the main energy estimate (2.30) and on an isoperimetric inequality for tamed
J-holomorphic curves. The prototype removable singularity theorem is the result of Sacks—
Uhlenbeck for harmonic maps [SU]J. In our case the presence of the symplectic form leads to a
strong isoperimetric inequality, which considerably simplifies the proof. We begin the section with
a version of the isoperimetric inequality for J-holomorphic maps and one of its main corollaries,
the monotonicity property of J-holomorphic maps. These results are used by Gromov and Pansu
[Pa] to prove a C°-removable singularity theorem (also see [McD2] and Lemma 3.7 below).

Lemma 3.1. (Isoperimetric Inequality) Let h be a metric on N, hermitian for J. There

exist constants €y and C' > 0 depending only on N, J, and h such that if f : Q@ — N isa
J -holomorphic map with diam(f(2)) < €, then any subdomain 2 C Q whose boundary is
homeomorphic to a circle satisfies

Area, (f(2)) < C length; (9f(Q)).

Proof. We first fix « € N and construct a local symplectic form w that is taming for .J.
Let wq be the constant 2-form on T, NV defined by

wo(v, Jov) = hy(v,v) v €T,N.

Then w = (exp~')*wy is a symplectic form that is well defined and tames .J on a neighborhood
U of .

Next define a hermitian metric ¢ on U by
g(u,v) =w(u, Jv) w,veT,N, yeUl. (3.1)

Then g and £ are both uniformly equivalent to a euclidean metric on a smaller set V' C U. By
compactness we can assume that V' is a ball of radius €, independent of x.
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By our hypotheses and the compatibility condition (3.1), f(2) is a g-area minimizing surface
for its boundary curve <y and lies in one of the neighbothoods V' constructed above. After an
arbitrarily small perturbation of {2 we can assume that v is a smooth Jordan curve. Let {2’ be the
solution to the Plateau problem for the euclidean metric in V' with boundary «y (see [L]). This £/
is a smooth minimal disk, so by the classical isoperimetric inequality

Areag, (') < C - length? (7).

euc

Since g is uniformly equivalent to the euclidean metric

Area, (Q) < Area, () < C'Areag, (') < C"lengthl, () < C”/lengthz(’y). (3.2)

euc

The result follows because g and h are uniformly equivalent. ]

The next two geometric results are immediate consequences of the isoperimetric inequal-
ity and the main energy estimate of the previous section. The first shows that the well-known
monotonicity property of minimal surfaces also applies to J-holomorphic maps. The monotonicity
formula says that, locally, the area of the image grows essentially like that of a two-dimensional
plane. (Recall from Section 1 that energy and area are the same). Thus the images of holomorphic
maps are not too sparse. The second result—applied to concentric disks D(e) C D(2¢)—gives
a bound for the diameter of the image in terms of the area. This shows, in particular, that the
images of disks are not too elongated.

Corollary 3.2. (Monotonicity) Suppose that f : 2 — N is J-holomorphic on a do-
main ). There is a constant ¢ such that for any sufficiently small ball B(p, §) in N with center
p in f(2) and with no boundary inside B(p, ) we have

Area(f(Q) N B(p,8)) > cb”. (3.3)

Proof. By the isoperimetric inequality of Lemma 3.1, the function A(r) = Area(f(Q2)N
B(p,r)) satisfies \/A(r) < ¢;L = ¢;A'(r) for sufficiently small r. Integrating form 0 to &
yields (3.3). O

Lemma 3.3. There is a constant C = C(J, h) such that for any J-holomorphic map
[ :Q — N and any subdomain D C Q with dist(D, 9) > € we have

diam( f(D)) < % diam(D)\/Area( (). (3.4)

Here the diameter of D is measured along paths in D. In particular, when f is defined on a

closed surface 2
diam(f (X)) < C'4/Area(f(2)).
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Proof. Cover Q) by disks D, (z;, €;) with €; < € such that the energy of f on each disk
is less than the constant €y of Theorem 2.3. The main energy estimate (2.30) applies to each of
these disks. For any two points &,y € D we have dist(f(z), f(y)) < dist(z,y) sup, |df| and
hence

é?{n;fn—f(% < Sgp|df‘ < sup Sl;lfg— Area(f(D,)) < —g—VArea(f(Q))_ O

The isoperimetric inequality above applies to J-holomorphic maps in coordinate neighbor-
hoods, and this is not sufficient for some applications. However, we can use the symplectic form
to prove a stronger version, valid for tamed J-holomorphic curves.

Proposition 3.4. (Strong Isoperimetric Inequality) Let §) C X be a domain with boundary
components {7;}. There are constants €y, C such that any smooth tamed J-holomorphic map
f Q2 — N with length(f(v:)) < € Vi has an associated homology class o and satisfies

Area(f(©)) < C' | A(a) + Zlengthz(f(%)) (3:5)

where A(o) = (w, [&]) is the “symplectic area” of the homology class .

Proof. Let ¢ be the injectivity radius of the J-tamed metric on V. For each point p € N
the ball B(p, €) is contractible, so by the Poincaré Lemma w = df, on B(p, €). In fact, 3,
can be determined by integrating outward from p, so satisfies a bound

|6,(z)| < Cdist(p,z)  Vz € B(p,e). (3.6)

Here C' depends on p, but by the compactness of N we can find a uniform constant C.

The hypothesis of the proposition ensures that the image of each boundary component y;
lies in a ball B; of radius = length(f(7;)). Choose smooth disks D; C B; with 9D; = f(;).
The homology class of such disks D; is well defined. Consequently, the closed surface

S=f() ulJD

defines a homology class « that is naturally associated to f(£2). Its symplectic area is

A(a):/swz/fl(mw—%:/mw,
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so by the tamed condition we have

Areal£(2)) < c |

!

(Q)w=c{A(a)+zi:/Diw].

On the other hand, w = df3; on each D;, so by (3.6)

/ w=[ B < [ength(f(7))] swp|Bi] < Clengt®(f(7)).  (3.7)
D fvi) B;

The result follows. O

We now turn to the problem of removing a point singularity. Let D = D(p, ) be a disk
in a Riemann surface (X, j). We will use geodesic coordinates centered at p, writing r = |z|
for z € D and D(r) for disks centered at p = 0. Suppose that [ is a smooth finite-energy
J-holomorphic map from a punctured disk D — {0} into a symplectic manifold with tamed
almost complex structure .J. We will show that f extends to a smooth map on D). We will do
this using the Regularity Theorem 2.1. That theorem has two hypotheses. The first is completely
straightforward to verify:

Lemma 3.5. The map f above is weakly j.J-holomorphic on D.

Proof. Fix a smooth test function ¢ compactly supported in D and a family {f.} of
smooth cutoff functions with supp 3. C D(e€) and satisfying 0 < . < 1 and |df.| < C/e.
Then the integral (2.19) becomes (with the obvious notational shorthand)

[peon)+ € B0 = [D(1-BI&).08) + (1= B¢, B(0S)
+ [(D@o.00)+ (L. BOM). 6

The first integral on the right-hand side vanishes after integrating by parts since f is J-holomorphic
on supp (1 — .) C D — {0}. Noting that (again using shorthand) D(8.£) = . D¢ + df. - €
has support in D(¢€) and applying Holder’s inequality, one sees that the last integral in (3.8) is
dominated by

C (e} DElls + €] ( / Idf\2> .
J D(e)
This vanishes as ¢ — 0. Thus f is weakly J-holomorphic. O

We can now apply the Regularity Theorem 2.1 to remove the singularity provided we can
show that f is Holder continuous. By a well-known lemma of Morrey [M, Theorem 3.5.2] this
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is true if f satisfies an energy growth condition of the form

/D R (3.9)

Of course, since we are assuming that f is smooth away from the origin it suffices to show this
for disks centered at the origin. The standard technique for doing this—pioneered by Morrey—is
to construct a comparison surface and apply an isoperimetric inequality. In our case, most of this
work is done by the strong isoperimetric inequality (3.5).

Theorem 3.6. (Removable Singularities 1) Let (N, w, J) be a smooth symplectic mani-
fold with tamed almost complex structure. Then any smooth finite area J-holomorphic map from
a punctured disk D — {0} in X to N extends to a smooth J-holomorphic map on D.

Proof. For each sufficiently small » we can apply the main energy estimate (2.30) on the
disk D(z,r/2). This shows that |df |(z) < Cr~'\/E(D(0,2r) Yz with dist(0,z) = r, so

length( f(S,)) <2 df| < C'v/ E(D(2r)). 3.10
eneth(£(5,)) < 2xrsup [df] < C'\/E(DGr) 3.10)
where S, = 9dD(0,r). Thus for some r; > 0, we have

length(f(S,)) < € Vr < 7 (3.11)

where €q is the constant of Proposition 3.4 (the injectivity radius of V).
Now choose 6 < p < 7, and apply Proposition 3.4 to the annulus A(§, p). Using polar
coordinates on the annulus, we can consider f as a smooth map [(5, p] x S — N. But (3.11)

implies that for each » < 7 the image circle lies in a contractible set in V. It follows that the
homology class « associated to f(A(6, p)) by Proposition 3.4 is the zero class. Thus

Area(f(A(6,p))) < C [length®(f(S,)) + length®(f(Ss))] -

We can then use (3.10) to take the limit as 6 — 0 and estimate using Holder’s inequality:

Area(f(D(p))) < C 1ength2(f(Sp)) = C </S(p) laef])

IA

C' length(S,) - /s( : |0 f
I3

< C'pzl%Area(f(Dp)).
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Hence

—(—i%ln Area(f(D,)) >

R

where o = (C”) ™!, Integrating from r to r; gives
Area(f(D,)) < Cr®

for all » < ry (where the constant C depends on 7). This is exactly the needed energy growth
rate (3.9), and the result follows, as described above, from Morrey’s Lemma and the Regularity
Theorem 2.1. [

Remark. When the almost complex structure J is w-compatible, J-holomorphic curves
are minimal surfaces and hence harmonic maps. Thus in the J-compatible case, the removable
singularity theorem for .JJ-holomorphic curves follows from the harmonic map removable singu-
larity theorem of Sacks and Uhlenbeck. However, even in that case the above proof is easier and
more geometric. Oh has used a version of this argument to show removability of singularities at
certain boundary points [Oh]. O

The “tamed” condition in Theorem 3.6 is the appropriate one when studying symplectic
manifolds. However, the removable singularity problem makes sense in a more general setting:
for J-holomorphic maps between almost complex manifolds (without symplectic structure). It is
easy to extend the above result to this general context using arguments similar to those of [Pa].

Theorem 3.7. (Removable Singularities II) Let (N, J) be a smooth almost complex
manifold. Then any smooth finite area J-holomorphic map from a punctured disk D — {0} in X2
to N extends to a smooth J-holomorphic map on D.

Proof. We first show that f above extends continuously across the origin. Given 6 > 0,
choose 7 small enough that E(D(4r)) < ¢6*(1+ C')™ where ¢ < 1 is less than the constant
in (3.3) and C" is greater than the constant in (3.10). Then (3.10) shows that f(S,) C B; =
B(f(z),6) for some & € S,. If there is a y € D(r) with f(y) ¢ B(f(z),46) then (3.10)
shows that f(S,) lies in B, = B(f(y),6) and by continuity we know there is a z with
ly| < |z| < r and with By = B(f(z),6) disjoint from B; and B,. But then f(D, — D))
has no boundary in B; and

Area(f(D, — Dy,)) N Bs) < Area(f(D,)) = E(D,) < ¢,
contradicting (3.3). Therefore f(D,) lies in a ball of radius 46 and f extends continuously to D.
We can now construct, as in the proof of Lemma 3.1, a symplectic form w on a neighborhood

U of z = f(0) € N that is taming for J. Since f is continuous we have f(D,)) C U for
small 7, and hence the singularity is removable by the previous theorem. ]
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4. Bubbling

In this section we describe the renormalization procedure that results in the “tower of bub-
bles.” This procedure is quite general (see the remark at the end of this section). Our starting
point is the following theorem that is based on the “bubbling argument” of Sacks and Uhlenbeck.

Theorem 4.1. Let {.J,} be a sequence of almost complex structures on N converging in
C' 1o J and {f,} a sequence of J,,-holomorphic maps ¥ — N with E(f,) < C. Then there

is a subsequence of the { f,}, a finite set of points {z1,...,x} € X, and a J-holomorphic map
fo: 2 — N such that

(@) fo— foinClon% —{zy,...,2:}.

(b) The e(f,) converge as measures to e( fo) plus a sum of point measures:
K
e(fn) = e(fo) +>_mi 8(z;) (4.1)
=1

where each m; > By (By is the constant of Proposition 1.1b).

Remark. Here, and throughout these arguments, we use the convention of immediately re-
naming subsequences with the original subscripts, so a subsequence of { f,, } is still denoted { f,, }.

O

Proof. We will give the proof under the assumption that J, = J is a fixed almost
complex structure; the general case follows because all estimates in the argument are uniform for
a converging sequence of J,,.

Choose an 79 > 0 and set 7, = 27 "1y, m € Z,. For each m, choose a finite covering
Cio = {D(YasTm) | Yo € X} of ¥ such that each point of ¥ is covered at most A times by the

disks in C,,, and such that {D(y,, 7 /2)} is still a covering of ¥ (here & depends on ¥ only).
Let @be the constant determined by Theorem 2.3. For each 7,

> [ ez
o Y DWa,rm)
so for each j there are at most hC'/¢y disks on which
/ e(fi) > €. (4.2)
D(ya,'f'm)

The center points of these disks make at most hC'/€y sequences of points of ¥ (by letting
J = 1,2,...). Since Cy, is a finite covering and ¥ is compact we may assume these center
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points are fixed by passing to a subsequence of { f]} For each m, call these center points
{@1,m, ..., @1m} where [ is at most hC'/e. By the C'! estimates and the Ascoli theorem we can
successively choose a subsequence of { f; } that converges (in C'') in every disk { D(yo, 7 /2)}
for each D(Yo, 7 ) € Cyy except for at most ! disks of C,,,. Now let m — oo. We can then choose
a subsequence of {1} such that {; ,,..., %, } converge to points {z1,...,z;}. Choosing a
diagonal subsequence of { f;} gives a sequence that convergesin C'! on ©—{z, ..., z;}. Denote
the limit by fy. By elliptic regularity f, is smooth and J-holomorphic on ¥ ~ {z1, ..., 2;}, and
therefore extends to a smooth J-holomorphic map fy : 3 — N by the removable singularity
theorem (Theorem 3.6). This completes the proof of (a).

Observe that if C'' convergence fails at z; then for any € > 0 the numbers
b;- =sup {|df;| : = € D(z;,¢€)}

are unbounded (otherwise the Ascoli theorem implies C'! convergence on D(z;, €) for a subse-
quence). We henceforth assume that the {b;} are unbounded for eachs = 1,..., 1.

Now fix an € > 0, less than half the injectivity radius of (X, ), such that the disks
D(2¢,z;) C X are disjoint and set

|dfl? = 1dfol* | dv,. (4.3)

n—0o0

m; = lim lim sup /
=0 Di;e)

It follows immediately that the energy density measures converge as in (4.1), so it remains only
to show that m; > B,.

In the Sacks—Uhlenbeck argument [SU] this is done by renormalizing the maps f,, to construct
a “bubble” at each ;. For notational simplicity we will fix ¢ and write z and b,, for z; and b¢ .
Let Z,, be the point in D(z, €) at which |df,| achieves its supremum, so |df,,(Z,)| = b,. Then
T, — x asm — 00O by part (a) above. Fix a coordinate system in each disk D(z, 2¢) and define
renormalized maps by

Fuly) = fu(@, +y/b,)  fory € D(0,eb,) (4.4)

Then |df,(y)| < 1 at each y € D(0, €b,) and |df,(0)| = 1. The f,, are then a sequence of
J-holomorphic maps with bounded energy. By composing these with a fixed conformal identifi-
cation (stereographic projection) of S? — {p} with R?, we can regard these as maps from domains
in 57 — {p} into N. They are still .J-holomorphic with bounded energy, and the renormaliza-
tion (4.4) ensures that the sequence {f.} is bounded in C''. Repeating the above argument yields
a subsequence { f,, } that converges in C'' on .S - {p}toa J -holomorphic map f, and removing
the singularity at p gives a J-holomorphic “bubble” map f,, : S? — N associated to z;. This
is not a map to a point since |df..| = 1 at at least one point. Using Lemma 1.1 we then have

Theorem 4.1 provides one convergence result for ./-holomorphic curves. It turns out, how- .
ever, to have two related shortcomings. First, the inequality m; > F/(f,.) can be strict. This
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means that more energy has bubbled off at z; than has been captured by the map fm Essen-
tially the Sacks—Uhlenbeck procedure is sufficient to produce some J-holomorphic map from the
bubble, but does not record all the J-holomorphic maps associated with the bubble. Second, the
argument cannot be iterated. This is partly because it uses a variety of norms—C'!, sup, and
energy—and one loses track of these in the renormalization (4.4). To rectify these deficiencies
we modify the Sacks—Uhlenbeck renormalization procedure.

The idea is to replace the renormalization (4.4) by one that depends only on the energy.
The new procedure involves four steps. In the first three, all quantities depend on the (arbitrary)
choice of € > 0 made above; in the fourth step we let € — 0. The entire procedure depends on
the choice of a “scaling constant” Cy > 0; for now we only require that Cy < By/2. We will
continue to work with a fixed 7 and write ; and m; as simply z and m.

Step 1. (Pullback) We first identify a neighborhood of the bubble point with a domain in a
sphere and pullback the maps.

Let S i denote the unit two-sphere in R? with standard complex structure j, standard measure
dv, and two distinguished antipodal points p* = (0,0,1) and p~ = (0,0, —1). Fix a stereo-
graphic projection o : Sz — T, X, with o(p~) = 0 and o(p™) = 0. Use o and the exponential
map to pullback f, and fo, obtaining maps (still denoted f,, and fy) from a disk D(e) C S?
to N. For each 7 let ¢, € R’ be the center of mass of the measure | |df,.|> — |dfo|* | dv, ie.,

gn = (z,22,23) where

= [
D(e)

By (4.3) and the conformal invariance of the energy, the numbers

m(e,n) = /D(E)

|dful® = ldfol®

dv, 1=1,2,3.

|dful* = ldfol* | dv

satisfy

lim lim m(e,n) = m > B,.

e~ n-—oo

Hence by making € smaller and passing to a subsequence we can assume that m(e,n) > By /2
for all n.

Step 2. (Translation) Now compose with conformal transformations to move the center of
mass onto the z-axis.

Each translation of T}, 3 corresponds under o to a conformal transformation of S2 that fixes
the north pole p™. For each n there is a unique such transformation 7}, such that the measure
corresponding to the translated maps f, = f, o T}, and fo = fooT, has center of mass g, on
the z-axis. Since p~ corresponds under o o exp to the bubble point z, it follows that §,, — p~.
Hence each 7n and To are defined in some translated disk containing p~.
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Step 3. (Renormalization) We next compose with conformal transformations to make the
energy of each f,, in the northern hemisphere H™ C S? exactly equal to Cj,.

Radial dilations of 77, % correspond under ¢ to a one-parameter family p; of conformal

dilations of Sﬁ‘ For each ¢ > 0, the pullback maps f, ; = _fn op and fo; = 70 o p, are defined
on a disk D, in S2. Since the energy is conformally invariant, the numbers

m(e,n) :/Dt

are independent of ¢ and larger than By /2. Hence for each n there is a unique ¢,, such that

dfi|” = |dfos]* | dv (4.5a)

/ lldfn,tniz-\dfo,tnlz dv = Cp, (4.5b)
Dy, —H-

where H ™ is the southern hemisphere. Since & is a bubble point and Cy < By/2, it follows
from Theorem 4.1 that £,, — o0 as n — o<,

Now the renormalization: for each n let I2,, be the composition
2 Ptn @2 Tn 2 o exp
R,:S8;,—8 —8 —T,%X—3%. (4.6)

and define the renormalized sequence { f,, }

fn = fn,tn = R:z (fn!B(m,e)) . (4'7)

Then f,, is defined on Si except on a disk around p* whose radius becomes arbitrarily small as
n — oc. Again, because the energy is conformally invariant, the renormalized maps have energy

E(fn) < E(f.) < C and (4.5) implies

|E(fa) = E(fo) | > Bo/2 and /H +‘\d(fn)lz —d(f)P | dv = C, (4.8ab)

where H ™ is the northern hemisphere.

Now an is holomorphic with respect to the induced complex structure 7, = R 7, and the
sequence {J, } converges to the standard complex structure j on compact sets K C S2 — {p™}.
For each p > 0 apply the argument of Theorem 4.1 to the sequence {f,} on the compact set
S2 — D(p*, p), then let p — 0 and take a diagonal subsequence. This yields a subsequence
of the {f,} that converges in C' on S2 — {y1,...%;,p"} to a smooth j.J-holomorphic map
fz:8*— N, and

e(fn) = e(fa) + D my 6(y;) + Tubys. (4.9)

j=1

where 7, = lim E(fn) - E()Zz) - 2321 myj.
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Step 4. (The € — 0 limit) Each of the quantities in (4.9)—the {m;}, 7, the {y;}, and the
limit map { fm}—depend on the choice of € > 0 made earlier. Now let € — 0. Again we have
a family of j.J-holomorphic maps {f,(¢)} with bounded energy, and again Theorem 4.1 shows
that there is a subsequence converging in C off another set of points {zj, p*’} to a smooth
jJ -holomorphic map f; As for the singular part of the measures on the left-hand side of (4.9),
we know, using Proposition 1.1b, that each m; lies between By and C and 7, < Cj. Hence as
€ — 0 the 2 + 1-tuple {yy, Y2, ... Y1, M1, My ... My, T, } Tanges over the compact set

[C/ By

]
U Syml(sz) X [B()ao]l X [0700]7
=0

and therefore has a convergent subsequence. Thus we obtain a limiting 7 J/-holomorphic map fw :
S2 — N and points {y;} (the limit points just found together with the z;) such that a diagonal
subsequence { f, } of the sequence {f,(€)} converges to f, in C' on S? — {y;,...yp,p*},
and

e(fn) - e(fw) + ij 6(y1) + Tm6p+‘ (4'10)

j=1

For each € > 0 the center of mass of le(fn(€)) — e(fo(€))] lies on the z-axis. Moreover, as
€ — 0 the e(fo(€)) converge to O as measures. Hence the limit measure in (4.10) has center of
mass on the z-axis and (4.8) becomes

E(f.) —m.> By and / ()P dv — Co, (4.11ab)
H+

In summary, this renormalization procedure associates to each point x; of (4.1) a sequence
of J-holomorphic maps 5% — N which converge to a j.J-holomorphic map f,, : S* — N in
C'on ¥ —{y1,.... Y., p"}. The map f,, is called a bubble and the quantity 7 is called
the energy loss associated with the point «;. We will examine the energy loss in detail in the next
section. Note that we can repeat the renormalization with each y;, j = 1,...,0'(x;), obtaining
bubbles on bubbles.

It is possible for ]gw to have F( fm) = 0, so the bubble is a map to a single point. In this

case we say that f, is a ghost bubble. The following lemma places an important constraint on
this possibility.

Lemma 4.2. IfE(fm) =0 then either I' > 2, or ' = 1 and 7, = C,,.

Proof. 1f E(f,) = 0 then e(f,) = 0.1f I’ = 0 then (4.10) implies that E(f,) — 7, <
Cy < By/2, contradicting (4.11a). If I = 1 then e(f,) — mb, + 7,6,+ for some y € S? and
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m = m, > By. The center of mass of the limit measure mé, + 7,6,+ lies on the z-axis, so
y = p* or p~. The possibility y = p* contradicts (4.11b) because m, > Cp. Thus y=p,
and (4.11b) then shows that 7, = Cj. O

Lemma 4.2 and Proposition 1.1b show that when the renormalization procedure is iterated
each step reduces the energy by at least Cy. Hence the process terminates after at most C'/Cj
iterations and the tower of bubbles is finite.

For some applications it is important to keep careful track of the choices and parameters
involved in the bubbling process. One such parameter occurs in step 1, where we chose an element
o in the space Ster of all orientation-preserving conformal maps o : S? — R? with olp7)=0
and o(p™) = oo. Note that the group C* acts conformally on R? = C by complex multiplication
and hence acts on Ster by composition.

The corresponding global picture is described in terms of bundles associated to the bundle
- 'Y of oriented conformal—or equivalently complex—frames on X, which is a principal C*-
bundle over X determined by the oriented conformal (complex) structure of . The complex
tangent bundle is 7% = F'¥ X¢» C and its compactification is S¥ = F'¥ X ¢« S2. Sections of
the bundle F'Y X ¢« Ster are global (fiberwise) stereographic projections

oc: 80 —=TX%,

and the space S = I'(F'X x¢- Ster) of such o is acted on (by o — \ o o) by the “gauge
group” H of nowhere vanishing complex-valued functions on .

The other effective parameter in our bubbling process is a choice of a metric p within
the conformal class; this is the same as a section ;1 € I'(A) of the real line bundle A =
F% X € /S, The following proposition shows a conformal change of metric can be absorbed
in a gauge transformation. To state it, we let the group Hp of positive real functions act on the

pair (11, 0) by (p,0) = (A"'p, Ao).

Proposition 4.3. The numbers {m;} and 7, the points {y;} € ST, and the limit map
{fe}: SE — N in (4.10) depend only on the subsequence {f,} and the orbit of the action of
Hp on (u, o).

Proof. Replace 4 with a conformal metric ' = ¢*u. The exponential maps exp, and
exp, of these metrics then satisfy exp’ = A(I/d. + O(e))exp on D(0,¢) C T,X, where
A= ¢(z;) € R. It follows that o;," = X o, (14 O(e)). Renormalizing by steps 2 and 3 above,
one finds that the map f; in (4.9) is replaced by f, = f, o Ao o(Id. 4+ O(e)). Letting € — 0
and 7 — oo, we see that the renormalized map f, constructed from the map o and the metric
{4 is the same as the one constructed from A~ and A O
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Now repeat the construction of SX. Compactifying the vertical tangent space of S% — ¥
gives an S2-bundle S?Y over SY. Iterating yields a tower of S? fibrations

- 1P SR LI) VRENPRR o) Y JR ) (4.13)

Definition. A bubble domain at level k is a fiber B of S¥¥ — S*~!$ (B is a copy of
Sﬁ). A bubble domain tower is a finite union I" of bubble domains that form a tower, i.e., such
that the projection of TN S*Y lies in T N S*~'%.

Given a sequence of J-holomorphic maps, the iterated renormalization procedure singles out
a bubble domain tower 7' = UB;. At each iteration, renormalization gives J-holomorphic maps
B; — N-—these are the bubbles referred to above. The union of the renormalization maps is a
map from 1" to N that we will call a bubble tower. The image of such a bubble tower forms
what Gromov calls a “cusp-curve” [G].

Remark. The renormalization procedure described above applies without change to se-
quences of harmonic maps and for sequences of c-harmonic maps (i.e., critical points of the
Sacks—-Uhlenbeck a-energy) with ¢ — 1. The needed estimates and removable singularities
theorem are in [SUJ. O

5. The bubble tree

The bubble tower constructed in Section 4 has the structure of a tree where the vertices are
JJ-holomorphic maps and the edges are bubble points. The tree is constructed from the sequence
{fn} as follows: The {f,} converge to fy : £ — N on ¥ — {z,...,2}. The base vertex
of the tree is the map f;, which we relabel f, and the edges emanating from the base vertex
are the points {a:z} Each edge has a mass 71;, which is the mass of the limiting measure at ;.
For each z; the renormalization process gives a sequence { f,} converging to a J-holomorphic
map f; : B; — N from the bubble domain B; = S? at x;, plus the sum of point measures
2 mijb(zi;) + Tz;0,+. We label each edge by the pair (z;,T,,), where 7, is the energy loss
associated with the bubble point z;. The edge (z;,7,,) terminates in the vertex f; which, in
turn, is the source of new edges {xij}, and so on. An example of a bubble tree was given in the
introduction.

Associated to each vertex f; = f; ;. of the tree are two invariants: the homology class
[f1] and the energy E(f;). If E(f7) = 0 then f; is a map to a point and we say f; is a ghost
map and its vertex is a ghost vertex; the above construction of the tree can include such vertices.

At each bubble point « we obtain one image point fo(x) by removing the singularity in
the base map fo, and another image point f(p) by removing the singularity in the bubble map
f = f. at the point p at infinity on the bubble domain. We next investigate the structure of
the limiting map between these bubble points. When 7 is large there is an annulus around the
point p* on S2 whose image under f,, is a tube joining circles near fo(z) and f(p™). We call
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such tubes “connecting tubes.” These connecting tubes may contain some energy which does not
disappear as n — oo. If this occurs the renormalization scheme does not preserve energy—there
is “energy loss.” For sequences of J-holomorphic curves we will rule this out: the isoperimetric
inequality and monotonicity imply that these tubes are impossible, and hence there is no energy
loss and the points fo(x) and f(p™) coincide. We call this latter phenomenon “zero distance
bubbling” (Lemma 5.3 below).

We now further restrict the size of Cj. For this we use the observation of Siu and Yau [SY]
that there is a constant K depending only on the geometry of N such that any C! map f :
S? — N that is nontrivial in homotopy has

E(f) = K. (5.1)

We henceforth take Cy = %min(Ko, By).

Lemma 5.1. (Connecting tubes) Suppose that {f.} is a sequence of harmonic or J-
holomorphic maps that converge to f : 32 — N with a bubble point x € 3 and bubble map
f 8% — N.Let p™ be the point at infinity on the bubble domain. Then (after replacing { f,, }
by a subsequence) there are sequences {61(n)} and {6,(n)} with &; < 6, such that the annuli
A, = D(pT,86,) — D(p*, é1) have the following properties: Given € > 0 there is an N such
that whenn > N,

(a) fn(aD (p™,61)) has length less than 2€ and lies in an €-ball around fo(z),
) f.(OD(pT,8,)) has length less than 2¢ and lies in an e-ball around f(p™),

(c) the homotopy class constructed from fn (A,) by collapsing the boundary curves to
fo(z) and f(p™) is zero.

Proof. For each & > 0 set

si(k) = swp{ 5 | Ao(Dle. ) € B (£, ) } (5:2)

and
(0 =sup{ & | FDw.0) < B (767 1) }. (53)

Using the notation of (4.6) and (4.7) we see that S2 — R>'(D(z, 6;(k))) is a disk D(p*, 8,)

of some radius 8,. Since t,, — 00 as n — oo we have 6, > 6, for all large n. Then the annulus

Ani = D(p", &(k)) N R D(z, 6 (k))
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in 52 corresponds to the annulus
RoAni = D(x, (k) 0 RaD(p™, 82(k))

in 2. Note that fn — f uniformly in C' outside disks around p*, and similarly f,, — f, outside
disks around z. Hence we can choose 72 such that on the outer boundary of A,

Fo0G* 50 < B(Fp, ) oz (5.4

and

engtt[£,(OD(p*, 62))) — lengt[ o OD(p*, 62))]| < 4/ (5.40)

and on its inner boundary

FuOD(* 83 (K))) = Fo(R;0D(a,8,(1)) = £,(0D(z,8)) € B (folw). 7 ) (5:50
Vn > ny and
lengtnl, (9D (", 51))] ~ lengenl fo(@D (a, 81))]| < 4/ (5.50)

Then {n;} determines a subsequence of the {f, } and {f,}, which has properties (a) and (b). It
is clear from the construction of the A,, that

E(fa(An)) < Co < Ko/2 (5.6)

for all large n. Property (c) then follows by collapsing the ends of fn (A,) to obtain a C'! map
S? — N with energy less that K, and applying (5.1).  [J

The bubbling process can be viewed as a surgery. For large n f,, is C° close to fo on ©—UD;
where the D; = D(z;, 67) are small disks around the bubble points and, by Lemma 5.1, f,,(8D;)
lies in a geodesic ball around fo(x;). Hence the homology class [f,] obtained by identifying the
image of each 0D; to a point is [f,] = [fo] for large 7. Similarly, on each bubble domain
fa(0D(p™, 6,)) lies in a geodesic ball around fo(p™) for large n, so after identifying the image
of dD(p*,6,)) to a point we have a homology class [f,] . Since the tube of Lemma 5.1 does
not carry any homology, we conclude that

Lemma 5.2. If {f.} is a sequence of harmonic or J-holomorphic maps representing a
homology class o, then for n sufficiently large,

a=[f]= [f0]+2[fn,xi] in Hy(N,Z).
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1,0D(p"8))

f,0D(p"3,))

Figure 3. Bubbling with energy loss.

< > hween <

Figure 4. Bubbling without energy loss.
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When {f,} is a sequence of tamed .J-holomorphic curves, some special properties follow
from the strong isoperimetric property and monotonicity.

Lemma 5.3. Suppose {f,} is a sequence of tamed_J -holomorphic maps that converge
to fo : X — N with a bubble point x and bubble map f, : S* — N with point at infinity
pt € S2. Then

(i) 7. =0, ie, there is no energy loss, and
(i) fo(p™) = fo(x) (zero distance bubbling).

Proof. Lemma 5.1 implies that the image of f,, contains a tube whose boundary curves
have length going to zero. Since the tube carries no homology, the strong isoperimetric inequality
implies that the area of the tube vanishes in the limit. Thus 7, = 0.If f,(p™*) # fo(z), then since
the area of the tube shrinks to zero, Proposition 3.2 (monotonicity) is eventually contradicted.

(]

Lemma 5.3 implies that a configuration of two-spheres is the limit of a sequence of J-
holomorphic two-spheres only if the spheres of the configuration intersect. This imposes strong
restrictions on the structure of such limits, especially for J-holomorphic maps in dim N = 4.
Such restrictions do not occur in the case of sequences on harmonic or «-harmonic maps.

There are many beautiful properties of the bubble trees determined by the renormalization
process and Lemmas 4.2, 5.2, and 5.3. We list some of the properties below. These give constraints
on the possible bubble trees and show, for example, that not every tree with vertices .J -holomorphic
two-spheres and edges labeled by points arises from a bubbling sequence of .J-holomorphic maps.

Properties of the bubble tree

The following properties hold for the bubble trees associated with sequences {f,} of J-
holomorphic, harmonic, or c-harmonic maps. We assume that these represent a fixed homology
class [f,] = o and that E(f,)) < A for all n.

(1) Lemma 5.2 implies that

vertices

(2) While in general there may be energy loss, we do have

m B(f.) > > E(fi..)- (5.9)

vertices

(3) By Lemma 4.2 no branch of the bubble tree can terminate in a ghost vertex.
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When the maps are .J-holomorphic, the associated the bubble trees have the following addi-
tional properties.

(4) Energy is preserved, so (5.9) is an equality. Equivalently,

mz‘]mik = Area(fi]wik) + Zm“w (510)
J

(5) Since there is no energy loss, Lemma 4.2 implies that at least two edges must emanate
from a ghost vertex (except when the ghost vertex is the base vertex, in which case only one edge
may emanate).

(6) 1If two vertices are joined by an edge then the images of the corresponding bubble
maps intersect.

(7) The Chern numbers c¢(f) = ¢;(N)[f ()] are defined and by (5.8) satisfy

C(Oé) = C(fn) = Z C(lezk) (5.1])

vertices

(8) From (1.7) we must have {w, [fi, i.]) > O with equality if and only if f; ;, is a
ghost.

(9) Each vertex f; is in a nonempty moduli space, so dim M, ;. ; > 0 for generic J.
From the index theorem (see, for instance, [G]) this means that the base vertex f satifies, for
generic J,

3 ifg=0
c(fy>n(g—1)+o0,, where o,=2 1 ifg=1 (5.12)
0 ifg>1

(where 2n = dim N and g = genus(X)) and that all other vertices are either ghost vertices or
satisfy

c(fi) >3 —n. (5.13)

(10) When dim N = 4 it follows from (6) above and the intersection properties of holo-
morphic curves that the homology classes of adjacent vertices must have positive intersection
number.

6. The convergence theorem

Let {f,} be a sequence of jJ-holomorphic maps ¥ — N. The renormalization procedure
of Section 4 associates to a subsequence of {f,} (still denoted {f,}) a bubble domain tower
T and a J-holomorphic map fo, : T — N. In this section we formulate and prove a precise
statement of the C° N L% convergence of the sequence {f,} to f.. Note that it is tricky to
even state such a convergence result because the domains change: the maps f, have domain
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¥ whereas the map fo, has domain 7. However, by modifying the “capping off” procedure of
Lemma 5.2 we can construct a “prolongation” P, (f,) of each f, to a map 7" — N. The main
point is to make this construction canonical in order to ensure that the prolongations of the fn
converge to f.. in suitable norms.

The construction requires a way of extending maps similar to the capping off procedure of
Lemma 5.2, but which comes with an estimate on the energy of the extension. For this we use

minimal surfaces. The basic idea of the following lemma goes back to Lebesgue and Courant;
we follow Meeks and Yau [MY2].

Extension Lemma 6.1. For each A there is an €, > 0 such that every continuous L'*
map defined off a closed disk of radius € < €

f:¥=D(z,e) = N

with energy E(f) < A extends to a continuous L“* map f X — N. There is a disk
D; = D(z,ry) with radius € < vy < \/€ such that this extension satisfies

| 1afP < Clogel” (6.1)
Dy
and

dist(f(y), f(2)) < Clloge|™"*  Vy € D;, z € 8D;. (6.2)

Proof. Cover N with convex geodesic balls and let A > 0 be the Lebesgue number of
the cover. Fix €; < exp(—87A/)?) small enough that the metric on each disk D(z, \/€;) in &
is uniformly close to the euclidean metric. Then for € < ¢; thereis an 7, € <1 < \/E such that

27 2
/ —Z| (r,0) ,d6 < 4A|loge|™". (6.3)
o |08
Indeed, otherwise we would have
Ve 2w 1 9f )P
/ / p o1 (r,0)pdf dp > 4A|loge| ™" - log p|Y* > 24, (6.4)
€ 0

while

2

a3 [ [

} df dp. (6.5)
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Let 77 be the sup of the 7 € [¢, /€] such that (6.3) holds, and set D; = D(z,7¢). For this
choice of €, and ; the curve v = f(9Dy) has length

1

length(f[0D;]) < Va2r (/027r [df|2) 2 < V8rA|loge| ™t < A (6.6)

and hence lies in a convex geodesic ball B in N of radius v/87 Al log e[_%. Assuming that 7y is a
Jordan curve, we can then solve the Plateau problerp in N with this boundary curve (see [MY1]
and [MY2]), obtaining a conformal harmonic map f : Dy — N which extends f and minimizes
area amongst all such extensions. Define 7 = f on Dy and 7 = f on its complement. Since the
image of f lies in B (by the maximum principle) we obtain (6.2).

We can also solve the Plateau problem with respect to the euclidean metrics on D(z,7y)
and B, obtaining a map g : Dy — N. Since the metrics on D ¢ and B are uniformly close to
the euclidean metrics, minimality and the isoperimetric inequality for euclidean space give

eucl

R C
Area(f) < Area(g) < CAreaqgq(g) < gy lengthZ , (7) < C" length? (7). (6.7)
m
Since ? is conformal its area and energy are equal, so (6.6) and (6.7) yield
/ 1472 g/ dfP < 8wAC|loge|™". (6.8)
D(m,e) Df

Finally, if v is not a Jordan curve we can perturb it slightly to make it Jordan, maintaining the
above estimate within a factor of two. ]

For € < ¢, (the constant of Lemma 6.1), the prolongation P, ( f,,) of f,, is defined as follows.
First, on X choose disks D; = D(z;, €) around the bubble points. Then the restriction of f,, to

2 — UD; extends (by the extension lemma) to a continuous map £ — N. This defines P.(f,,)
on 2.

The prolongation P.(f,) on each bubble is defined inductively as follows. Fix a bubble
point x; and consider the renormalized maps f, = f,, ., defined by (4.7). These are not defined
on a neighborhood of the point at infinity p* € Sﬁl but for sufficiently large n they are defined
outside D;o = D(p™, €). Of course, the sequence f,, has its own bubble points z;; € S% which
lie in disks D;; = D(z,;, €). Define the prolongation P.(f,) on the bubble by restricting f,, to
52— Uj=oD;; and extending by Lemma 6.1.

Theorem 6.2. Let {f.} be a sequence of jJ-holomorphic maps ¥ — N. Then there is
a bubble tower T' and a sequence €, "\, 0 such that a subsequence of

P, (fu): T — N

convergesin C°NL"* to a smooth jJ -holomorphic map T — N . The convergence is in C" (K )



Pseudo-Holomorphic Maps and Bubble Trees - 95

Jor each compact set K CC T — U{x;} where {z; | 1 <1< L} is the complete set of bubble
points and points at infinity of T'.

Proof. Convergence in C" on compact sets K CC T — U{z,} follows immediately from
Theorem 4.1 (applied on each bubble). Set K,, = T —UD(z;, €,). For each n there is an N (n)
such that

[Pe, (fi) = foollipx, <1/n ¥k > N(n). (6.9)
Since f,, € C1,
/ |dfoc " < sup |dfoo* Vol D(1, \/€n) < C'e,. (6.10)
'D('tly\/g;

Then since €, < 7y for each n, (6.9), (6.10), and (6.1) imply that
[Pe, (fi) = foslliar < 1/n+ LC|loge,|™ + LC, Yk > N(n).

Hence the diagonal sequence {73\’;@)} converges in L"?(T) to fo.. The statement about conti-
nuity follows similarly using (6.2). O '

We conclude with two corollaries, both valid for sequences of J-holomorphic maps. The first
shows that energy is conserved. Thus the renormalization process of Section 4—unlike Sacks—
Uhlenbeck renormalization—keeps track of all bubbles.

Corollary 6.3. E(f,) — E(fs) as n — oo.

Proof. Theorem 6.2 shows that E(P. (f,)) — E(f). But from the definition of the
prolongation the difference between E'(P, (f.)) and E(f,) is bounded by the sum of the energy
in the tubes of Lemma 5.1 and the energy of the extensions. This vanishes in the limit by Lemma
5.3 and equation (6.1). [

Corollary 6.4. If {f,.} is a sequence of j.J-holomorphic maps ¥ — N then there is a
subsequence whose image in N converge pointwise to the image of fo : T — N.

Proof. From Theorem 6.2 the image of the P, (f,) converge pointwise to the image of
foo. But jJ-holomorphic maps have the “zero distance bubbling” property of Lemma 5.3, and
s0 by construction the images of P, (f,) and f,, : ¥ — N agree off the €,-balls around the
image under f., of each bubble point of 7. [
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This last result—the pointwise convergence of the image—is a crucial fact in applications.
This is the convergence that is used, for example, at a key point in McDuff’s construction of
distinct symplectic manifolds with the same periods [McD1, Proposition 7.2].

Appendix

In this appendix we do a computation using the method of moving frames. The summation
convention is used throughout.

Let (¥, ) be a Riemann surface with metric ; compatible with j and let (NV,.J) be an
almost complex manifold with hermitian metric h. Choose a hermitian connection V on N. Let
{w,} be a unitary coframe on [N and let {woﬁ} be the connection 1-forms with respect to this
coframe. Then the { wu-ﬁj} satisfy

waﬁ = — Wgw (Al)

and the first structure equation

dwe =w,gANws+ Ta (A.2)
where 7, is the torsion 2-form of the connection. The form 7, involves the covariant derivative
of the almost complex structure J (in fact, the integrability of J is implied by the vanishing of
T,). Differentiating again yields the second structure equation

dwﬂ‘g = Wy A w3 = Qa'ﬂ“ (A.3)

where Qoe'é is the curvature 2-form of the connection V. Similarly, let {6, 6, } be an orthonormal
coframe on Y. Then ¢ = 0 + 16, is a (1,0)-form for j. The first structure equation is

dp=—ipA¢ (A.4)

where p is the connection 1-form of the Levi—Civita connection for the coframe {6, 6,}. The
Gauss curvature K of p is defined by the second structure equation

dp = ——;-qu A . (A.5)

Let f : ¥ — N be a jJ-holomorphic map. Since df preserves type (cf. 2.3) we have

ffwy = an¢ (A.6)

where the a, are complex-valued functions. Taking the exterior derivative of (A.6) and using
(A.2) and (A.4) gives (the pullback f* will be suppressed in the following equations)

(dag = ipas —w,z505) N = T,. (A7)
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The forms

Da,, = da,, —ipa, —w,z0s (A.8)

are the components of the covariant derivative of df € Q'0(f*T'N). Decomposing these into
forms D'a, and D"a,, of type (1,0) and (0,1) respectively, we can write (A.7) as

D'aw A= 7a. (A.9)

. Differentiating (A.9) as in [W, Section 3] we obtain the explicit (local) formula

1 K _
A(la = 58(*7—04) + -—5&@ - a"Ya’ﬂaéRoﬂﬁg (AlO)

where O(x7,) is the function satisfying

0(x12)¢ = i(D(x7.))" = i(d(x7) = (s75)w,5) (A1)

Equations (A.10) and (2.17) are equivalent.
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