Math 930 Problem Set 6
Due Monday, October 27

Problem (6.1) Prove the second Bianchi identity
\[\nabla_X R(Y, Z) + \nabla_Y R(Z, X) + \nabla_Z R(X, Y) = 0 \]
for all vector fields \(X, Y, Z \).

Problem (6.2) As in Problem 5.1, let \(\{e_i\} \) be a local orthonormal frame of \(TM \) with dual frame \(\{e^i\} \) of \(T^*M \) and a connection 1-form \(\omega^i_j \) defined by \(\nabla_X e^i = \sum \omega^i_j(X) e^j \). Show that in this frame, the curvature is the \(\mathfrak{so}(n) \)-valued 2-form
\[\Omega^i_j = d\omega^i_j + \omega^k_i \wedge \omega^j_k \]
with \(\Omega^i_j = \sum -R^i_{jkl} e^k \wedge e^l \) (note minus!). Use the conventions \(\alpha \wedge \beta(X, Y) = \alpha(X) \beta(Y) - \alpha(Y) \beta(X) \) and \(R^i_{jkl} = \langle R(e_k, e_l)e^i, e^j \rangle \). (Note: here we are using the connection and curvature on \(T^*M \)).

Problem (6.3) A locally symmetric space is a Riemannian manifold \((M^n, g)\) whose curvature tensor \(R \) satisfies \(\nabla R = 0 \).
(a) Prove that if \(M \) has constant sectional curvature then \(M \) is a locally symmetric space.
(b) Let \(\gamma : [0, b] \to M \) be a geodesic in a locally symmetric space, and let \(X, Y, Z \) be parallel vector fields along \(\gamma \). Prove that \(R(X, Y)Z \) is parallel along \(\gamma \).
(c) Prove that a connected, 2-manifold is locally symmetric if and only if it has constant sectional curvature.

Problem (6.4) Let \(\gamma : [0, \infty) \to M \) be a geodesic in a locally symmetric space with tangent \(T = \dot{\gamma} \). Let \(v = T(0) \) be the tangent at \(p = \gamma(0) \). Define a linear transformation \(K_v : T_pM \to T_pM \) by
\[K_v(w) = -R(v, w) v \quad \text{for } w \in T_pM. \]
(a) Show that \(K_v \) is self-adjoint.
(b) Choose an orthonormal basis \(\{e_i\} \) of \(T_pM \) that diagonalizes \(K_v \), so \(K_v(e_i) = \lambda_i e_i \) for \(i = 1, \ldots, n \). Extend these to vector fields \(e_i(t) \) along \(\gamma \) by parallel transport. Prove that
\[K_T(e_i(t)) = \lambda_i e_i(t) \]
for all \(i \) and all \(t \geq 0 \), where \(\lambda_i \) is independent of \(t \).
(c) Show that \(X(t) = \sum_i x_i(t)e_i(t) \) is a Jacobi field along \(\gamma \) if and only if
\[\frac{d^2x_i}{dt^2} + \lambda_i x_i = 0 \quad i = 1, \ldots, n \]
The conjugate points of \(p \) along \(\gamma \) are those points \(q = \gamma(t) \) for which there exists a Jacobi field along \(\gamma \) that vanishes at \(p \) and at \(q \).
(d) Show that the conjugate points of \(p \) along \(\gamma \) are \(\gamma(\pi k/\sqrt{\lambda_i}) \), where \(k \) is an integer and \(\lambda_i \) is a positive eigenvalue of \(K_v \).