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50 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

neighborhood U, of a, in M, with compact closure. Then
Wiay,...,a; Uy ..., U) ={peG;pla)eUfori=1,...,5
is a neighborhood of the identity of G with compact closure.

' QED.

CororLrLARY 4.10.  If M is compact in addition to the assumption of
Corollary 4.9, then G is compact.

Proof. LetG* = {peG; o(M,) = M, fori =1,...,s}. Then
G* is a subgroup of G of finite index. In the proof of Corollary
4.9, let U, = M, Then G* is compact. Hence, G is compact.

QED.

5. Fibre bundles

Let M be a manifold and G a Lie group. A (differentiable)
principal fibre bundle over M with group G consists of a manifold P
and an action of G on P satisfying the following conditions:

(1) G acts freely on P on the right: (u,a) e P X G —ua =
RueP;

(2) M is the quotient space of P by the equivalence relation
induced by G, M = P/G, and the canonical projection =: P — M
is differentiable;

(3) Pislocally trivial, that is, every point x of M has a neighbor-
hood U such that #~*(U) is isomorphic with U x G in the sense
that there is a diffeomorphism o: #~2(U) — U x G such that
p(u) = (w(u), ¢(u)) where ¢ is a mapping of =—*(U) into &
satisfying g(ua) = (p(«))a for all u e = 2(U) and a € G.

A principal fibre bundle will be denoted by P(M, G, w),
P(M, G) or simply P. We call P the total space or the bundle space,
M the base space, G the structure group and = the projection. For each
x € M, 71(x) is a closed submanifold of P, called the fibre over x.
If u is a point of 7—(x), then 7~(x) is the set of points ua, a € G,
and is called the fibre through u. Every fibre is diffeomorphic
to G. :

Given a Lie group G and a manifold M, G acts freely on
P = M x G on the right as follows. For each b ¢ G, R, maps
(x,a) e M x G into (x, ab) ¢ M x G. The principal fibre bundle
P(M, G) thus obtained is called #rivial.

From local triviality of P(M, G) we see that if W is a sub-
manifold of M then #==1(W)(W, G) is a principal fibre bundle.
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We call it the portion of P over W or the restriction of P to W and
denote it by P| IW. '

Given a principal fibre bundle P(M, G), the action of G on P
induces a homomorphism o of the Lie algebra g of G into the Lie
algebra X(P) of vector fields on P by Proposition 4.1. For each
Aegq, A% = o(A) is called the fundamental vector field corresponding
to A. Since the action of G sends each fibre into itself, 4 * is
tangent to .the fibre at each u ¢ P. As G acts freely on P, 4%
never vanishes on P (if 4 # 0) by Proposition 4.1. The dimension
of cach fibre being equal to that of g, the mapping 4 — (4%), of
g into 7,,(P) is a linear isomorphism of g onto the tangent space
at u of the fibre through u. We prove

ProrosrtionN 5.1, Let A* be the fundamental vector field corre-
sponding to A e g. For each a e G, (R,) A* is the fundamental vector
Sield corresponding to (ad (a='))4 € g.

Proof. Since A4* is induced by the l-parameter group of
transformations R, where ¢, = exp ¢4, the vector field (R,),A*
is induced by the Il-parameter group of transformations
RR, R~ = R,,, by Proposition 1.7. Our assertion follows
from the fact that a¢. is the l-parameter group generated

by (ad (a1))4 « g. QED.

The concept of fundamental vector fields will prove to be
useful in the theory of connections.

In order to relate our intrinsic definition of a principal fibre
bundle to the definition and the construction by means of an
open covering, we need the concept of transition functions. By
(3) for a principal fibre bundle P(M, G), it is possible to choose
an open covering {U,} of M, each »—'(U,) provided with a dif-
feomorphism u — (w(u), ¢,(x)) of #=1(U,) onto U, x G such that
P(10) = (g, (). If wen (U, O Uy, then g,(ua) (¢, (ua)) * =
Pp(u) (@, (w)) 1, which shows that ¢,(u)(g,(x))~! depends only on
7(u) not on u. We can define a mapping y;,: U, N Us — G by
Vpu(m (1)) = @p(u) (9, (1)) 2. The family of mappings y,, are called
transition functions of the bundle P(M, G) corresponding to the
open covering {U,} of M. It is easy to verify that

(*) wya(x) = wvﬁ<x> ' y)ﬂoc(x) for x € Uoc M U/ﬁ N Uy'

Conversely, we have
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Prorosirion 5.2, Let M be a manifold, {U,} an open covering of M
and G a Lie group. Given a mapping wp,: U, O Uy — G for every non-
empty U, N Uy, in such a way that the relations (*) are satisfied, we

can construct a (differentiable) principal fibre bundle P(M, G) with

transition functions vy, :

Proof. We first observe that the relations (*) imply y,,(x) = ¢
for every x e U/, and Yo (¥) P (%) = ¢ for every x e U, N Us. Let
X, = U, X G for each index o and let X — U,X, be the topo-
logical sum of X, ; each element of X is a triple («, x, a) where « is
some index, x e U, and a ¢ G. Since each X, is a differentiable
manifold and X is a disjoint union of X,, X is a differentiable
manifold in a natural way. We introduce an equivalence relation
p in X as follows. We say that (a, x, a) e {a} x X, is equivalent to
(B2, 0) e {f} x Xy if and only if x =yelU, NU; and b =
Ypu(*)a. We remark that («, x, a) and (@, 9, b) are equivalent if
and only if x = y and ¢ = . Let P be the quotient space of X by
this equivalence relation p. We first show that G acts freely on P
on the right and that P/G = M. By definition, each ¢ ¢ G maps
the p-equivalence class of («, , 4) into the p-equivalence class of
(«, x, ac). It is easy to see that this definition is independent of the

choice of representative («, x, a) and that G acts freely on P on

the right. The projection m: P — M maps, by definition, the
p-equivalence class of (u, x, a) into x; the definition of # is inde-
pendent of the choice of representative («, %, a). For uveP,
7(u) = =(v) if and only if v = uc for some ceG. In fact, let
(«, %, a) and (B, y, b) be representatives for # and v respectively,
If v = uc for some ceG, then » = x and hence 7(v) = 7(u).
Conversely, if n(u) = x =y = 7(v) e U, N U, then v = uc
where ¢ = a1y, ()% ¢ G. In order to make P into a differenti-
able manifold, we first note that, by the natural mapping
X —P = X/p, each X, = U, x G is mapped 1:1 onto = (U,).
We introduce a differentiable structure in P by requiring that
7 (U,) is an open submanifold of P and that the mapping
X — P induces a diffeomorphism of X, = U, x G onto n(U,).
This is possible since every point of P is contained in 73 U,) for
some o« and the identification of («, x, ¢) with By %, ppu(x)a) is
made by means of differentiable mappings. It is easy to check that
the action of G on P is differentiable and P(M, G, ) is a differenti-
able principal fibre bundle. Finally, the transition functions of P
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corresponding to the covering {U,} are precisely the given vy, if
we define y,: =NU) — U, x G by Yo(u) = (¥, @), where
uent(U) is the p-equivalence class of (a, x, a). QED.

A homomorphism f of a principal fibre bundle P'(M', G') into
another principal fibre bundle P(M, G) consists of a mapping
J't P’ — P and a homomorphism f": G’ — G such that f'(u'a’) =
S (@) f"(a) for all ' € P’ and @’ € G’. For the sake of simplicity, we
shall denote f” and f” by the same letter f. Every homomorphism
J+ P"— P maps each fibre of P’ into a fibre of P and hence
induces a mapping of M’ into M, which will be also denoted by f.
A homomorphism f: P'(M’, G') — P(M, G) is called an imbedding
or injection if f: P’ — P is an imbedding and if 1G>G is a
monomorphism. If f: 7’ — P is an imbedding, then the induced
mapping f: M’ — M is also an imbedding. By identifying P’ with
J(P), G" with f(G") and M’ with f(M’), we say that P (M, G is
a subbundle of P(M, G). If, moreover, M’ = M and the induced
mapping f: M’ — M is the identity transformation of M,
ST P (M, G) — P(M,G) is called a reduction of the structure
group G of P(M, G) to G'. The subbundle P'(AM, G") is called a
reduced bundle. Given P(M, G) and a Lie subgroup G’ of G, we say
that the structure group G is reducible to G’ if there is a reduced
bundle P’'(M, G'). Note that we do not require in general that
G’ is a closed subgroup of G. This generality is needed in the
theory of connections.

Prorosrrion 5.3.  The structure group G of a principal fibre bundle
P(M, G) is reducible to a Lie subgroup G’ if and only if there is an open
covering {U,} of M with a set of transition functions Yoo which take their
values in G'.

Proof. = Suppose first that the structure group G is reducible to
G’ and let P'(M, G') be a reduced bundle. Consider P’ as a
submanifold of P. Let {U,} be an open covering of M such that
each #'~1(U,) (#': the projection of P’ onto M ) is provided with
an isomorphism u — (7’'(u), ¢ (u)) of 7' ~YU,) onto U, x G'.
The corresponding transition functions take their values in G'.
Now, for the same covering {U,}, we define an isomorphism of
7 (U,) (m: the projection of P onto M) onto U, x G by extending
¢, as follows. Every v e n1(U,) may be represented in the form
v = ua for some 4 e 7'~1(U,) and a ¢ G and we set P(v) = @, (u)a.
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It is casy to see that ¢,(v) is independent of the choice of represen-
tation v = ua. We see then thato — (m(2), ¢,(v)) is an isomorphism
of #=Y(U,) onto U, x G. The corresponding transition functions
Voo () = @p(0) (o (0)) T = @3 () (@, (u)) ! take their values in G

Conversely, assume that there is a covering {U,} of M witha
set of transition functions y,, all taking values in a Lie subgroup
G' of G. For U, N U, # ¢, p, is a differentiable mapping of
U, N Uy into a~Lie group G such that v, (U, N Us) < G'. The
crucial point is that g, is a differentiable mapping of U, N U into
G’ with respect to the differentiable structure of G’. This follows
from Proposition 1.3; note that a Lie subgroup satisfies the
second axiom of countability by definition, cf. §4. By Proposition
5.2, we can construct a principal fibre bundle P'(M, G') from
(U} and {y;,}. Finally, we imbed P’ into P as follows. Let
for 7 HU) — «HU,) be the composite of the following three
mappings:

7YY — U, x G — U, X G—aU,).

It is easy to see thatf, = fyona' (U, N Us) and that the mapping
f: P' — P thus defined by {f;} is an injection. QLED.

Let P(M, G) be a principal fibre bundle and F a manifold on
which G acts on the left: (a, &) ¢ G X F —aéeF. We shall
construct a fibre bundle E(M, F, G, P) associated with P with
standard fibre F. On the product manifold P x F, we let G act on
the right as follows: an element a ¢ G maps (u, &) e P X I into
(ua, a2&) e P x F. The quotient space of P x F by this group
action is denoted by E = P x4 F. A differentiable structure will
be introduced in E later and at this moment E is only a set. The
mapping P x F — M which maps (x, &) into w(u) induces a
mapping 5, called the projection, of E onto M. For each x e M,
the set w5 (x) is called the fibre of £ over x. Every point x of M
has a neighborhood U such that #~1(U) is isomorphic to U x G.
Identifying #~2(U) with U x G, we see that the action of G on
#~3(U) x F on the right is given by ~

(%, a, §) — (x, ab, b-1&)  for (x, a, £ eUx GXF and beG.

It follows that the isomorphism = 1(U) ~ U x G induces an
isomorphism #;'(U) ~ U x F. We can therefore introduce a
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differentiable structure in £ by the requirement that =5 (U) is
an open submanifold of £ which is diffeomorphic with U x F
under the isomorphism 75 (U) ~ U x F. The projection m, is
then a differentiable mapping of £ onto M. We call E or more
precisely E(M, F,\G, P) the fibre bundle over the base M, with (standard)
Jibre I and (structure) group G, which is associated with the principal
Jibre bundle P. - :

Prorosirion 5.4, Let P(M, G) be a principal fibre bundle and F a-
manifold on which G acts on the left. Let E(M, F, G, P) be the fibre
I?undle assocrated with P. For each u € P and each & € F, denote by u¢ the
image of (u, &) € P X F by the natural projection P x F — E. Then
each u e P is a mapping of F onto F, = mi'(x) where x = w(u) and

(ua)é = u(al)  forueP,aeG, EcF.

The proof is trivial and is left to the reader.

By an isomorphism of a fibre F, = =3 '(x), x ¢ M, onto another
fibre £, y € M, we mean a diffeomorphism which can be repre-
sented in the form vowu=', where uen~(x) and ven~1(y) are
cons'idere’d as mappings of /' onto F, and F, respectively. In
particular, an automorphism of the fibre F, is a mapping of the
form v o u= with u,v e w~1(x). In this case, v = ua for someae G
so that any automorphism of F, can be expressed in the form
uoaou where u is an arbitrarily fixed point of #~'(x). The
group of automorphisms of F, is hence isomorphic with the
structure group G.

Example 5.1. G(G/H, H): Let G be a Lie group and H a
closed subgroup of G. We let H act on G on the right as follows.
E\{ery a € H maps u € G into ua. We then obtain a differentiable
pltlncipal fibre bundle G(G/H, H) over the base manifold G/H
Wth structure group f{; the Jocal triviality follows from the
existence of a local cross section. It is proved in Chevalley [1;
p- 110] that if 7 is the projection of G onto G/H and ¢ is the
identity of G, then there is a mapping o of a neighborhood of
7(e) in G/H into G such that 7 o ¢ is the identity transformation
of the neighborhood. See also Steenrod [1; pp. 28-33].

.Example 5.2.  Bundle of linear frames: Let M be a manifold of
dimension n. A lincar frame u at a point x € M is an ordered basis

Xy, ..., X, of the tangent space 7,(M). Let L(M) be the set of
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all linear frames u at all points of M and let = }oe the mapping of
L(M) onto M which maps a linear frame » at x into x. The general
linear group GL(n; R) acts on L(M) on the rlght as follows. If
a = (a) e GL(n; R) and u = (X, ..., &, ) isa linear frame at x,
then ua is, by definition, the linear frame (¥, ..., ¥,) at x defined
by ¥, = %, alX,. It is clear that GL(n; R) acts freely on L(M)
and 7(u) = 7(v) if and only if v = ua for some a € G'L(n;vR). Now
in order to introduce a differentiable structure in L(M), let
(x4, ..., «") be alocal coordinate system in a coordinate nelghbor—
hood U in M. Every frame u at x ¢ U can be expressed uniquely
in the form u = (X, ..., X,) with X, =X, Xf(a/ax’“)., yvhere
(X% is a non-singular matrix. This shows that w’l(U) is in 1:1
correspondence with U x GL(n; R). We can make L(M) into a
differentiable manifold by taking (+’) and (Xf) as a local coordi-
nate system in #—(U). It is now easy to verify that L{M)(M,
GL(n; R)) is a principal fibre bundle. We call L(M) the bundle of
linear frames over M. In view of Proposition 5.4., a linear fr?lme u
at x e M can be defined as a non-singular linear mapping of
R* onto T,(M). The two definitions are related to each other as
follows. Letey, . . ., ¢, be the natural basis for R*: ¢, = (1,0, ...,
0),...,e,=(0,...,0,1). Alinear frame u = (Xy, ..., X,) at
x can be given as a linear mapping u: R* — 7',(M) such that
ue, = X, for i = 1, ..., n. The action of GL(n; R) on L(M) can
bé accordingly interpreted as follows. Consider a = (a) € GL(iz, R)
as a linear transformation of R” which maps ¢; into 2, dje,. %hen
ua: R* — T,(M) is the composite of the following two mappings:

R 25 R > T, (M).

Example 5.3.  Tangent bundle: Let GL(n; R) act on R as above.
The tangent bundle T(M) over M is the bundle associated with L(M)
with standard fibre R It can be easily shown that the fibre of
T(M) over x e M may be considered as 77,(M).

Example 5.4.  Tensor bundles: Let T} be the tensor space of type
(r,s) over the vector space R" as deﬁped in §2. The group
GL(n: R) can be regarded as a group of ll'near transformatlorns of
the space T? by Proposition 2.12. With this standa.rd ﬁbre TS', we
obtain the tensor bundle TI(M) of type (r, s) over M which is associated
with L(M). It is easy to_see that the fibre of 77(M) over x e M
may be considered as the tensor space over 7,(M) of type (r, 5).
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Returning to the general case, let P(M, G) be a principal fibre
bundle and H a closed subgroup of G. In a natural way, G acts on
the quotient space G/H on the left. Let E(M, G/H, G, P) be the
assoclated bundle with standard fibre G/H. On the other hand,
being a subgroup of G, H acts on P on the right. Let P[H be the
quotient space of P by this action of H. Then we have

ProposiTioN 5.5.  The bundle E = P x 5 (G|H) associated with P
with standard fibre GIH can be identified with P|H as follows. An
element of E represented by (u, aky) € P < G|H is mapped into the element
of P|H represented by ua € P, where a ¢ G and &, is the origin of GIH, i.e.,
the coset H.

Consequently, P(E, H) is a principal fibre bundle over the base E — PIH
with structure group H. The projection P — E maps u € P into uby e E,
where u is considered as a mapping of the standard fibre G[H into a fibre of
E.

Proof. The proof is straightforward, except the local triviality
of the bundle P(E, H). This follows from local triviality of
E(M, GIH, G, P) and G(G/H, H) as follows. Let U be an open
set of M such that ;' (U) ~ U x G/H and let V be an open set
of G/H such that p=Y(V) ~ V x H, where p: G — G/H is the
projection. Let W be the open set of 75" (U) < E which corre-
sponds to U X V under the identification =z (U) ~ U x G/H.
If p: P—~E = P[H is the projection, then u=YW)~ W x H.

A cross section of a bundle E(M, F, G, P) is a mapping o: M — E
such that 7y o ¢ is the identity transformation of M. For P(M, G)
itself, a cross section o: M — P exists if and only if P is the trivial
bundle M x G (cf. Steenrod [1; p. 36]). More generally, we have

Prorosition 5.6, The structure group G of P(M, G) is reducible to
a closed subgroup H if and only if the associated bundle E(M, G/H, G, P)
admuts a cross section o2 M — E = P|H.

Proof. Suppose G is reducible to a closed subgroup H and let
Q(M, H) be a reduced bundle with injection f: Q - P. Let
p: P— E = P[H be the projection. If « and v are in the same
fibre of @, then v = ua for some a e H and hence w( flv)) =
p(f(u)a) = u(f(«)). This means that u o f is constant on each
fibre of @ and induces a mapping o: M — E, o(x) = u(f(w)
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where x = 7( f(u)). It is clear that o is a section of E. Conversely,
given a cross section o: M — E, let @ be the set of points u e P
such that u(u) = o(m(u)). In other words, @ is the inverse image
of o(M) by the projection u: P — E = P[H. For every xe M,
there is u € Q such that 7(u) = x because y~(o(x)) is non-empty.
Given u and v in the same fibre of P, if u € Q then v ¢ Q when and
only when v = ua for some a ¢ H. This follows from the fact that
w(w) = p(v) if and only if v = ua for some a ¢ H. It is now casy
to verify that @ is a closed submanifold of P and that Q is a
principal fibre bundle Q(M, H) imbedded in P(, G). QED.

Remark. The correspondence between the sections o: M —
E = P/H and the submanifolds ¢ is 1:1.

We shall now consider the question of extending a cross section
defined on a subset of the base manifold. A mapping f of a subset
A of a manifold M into another manifold is called differentiable on
A if for each point x € 4, there is a differentiable mapping f, of an
open neighborhood U, of x in M into M’ such that f, = f on
U, N A. If fis the restriction of a differentiable mapping of an
open set W containing 4 into M’, then f'is clearly differentiable
on A. Given a fibre bundle E(M, F, G, P) and a subset 4 of M, by
a cross section on 4 we mean a differentiable mapping o of 4 into
E such that 7 o ¢ is the identity transformation of 4.

Tueorem 5.7. Let E(M, F, G, P) be a fibre bundle such that the
base manifold M is paracompact and the fibre I is diffeomorphic with a
Euclidean space R™. Let A be a closed subset (possibly empty) of M.
Then every cross section o2 A — E defined on A can be extended to a cross
section defined on M. In the particular case where A is empty, there exists a
cross section of E defined on M.

Proof. By the very definition of a paracompact space, every
open covering of M has a locally finite open refinement. Since M
is normal, every locally finite open covering {U,} of M has an open
refinement {¥,} such that V; < U, for all 7 (see Appendix 3).

Lemma 1. A differentiable function defined on a closed set of R™ can
be extended to a differentiable function on R* (cf. Appendix 3).

Lemma 2. Every point of M has a neighborhood U such that every

section of E defined on a closed subset contained in U can be extended to U.
Proof. Given a point of M, it suffices to take a coordinate
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nfzighborhood U such that 75 '(U) is trivial: 73" (U) ~ U xF.
Sl.nCC Fis diffeomorphic with R™, a section on U can be identified
with a set of m functions f;, . . ., /,, defined on U. By Lemma 1
these functions can be extended to U. ,
Using Lemma 2, we shall prove Theorem 5.7. Let {U},., be
a locally finite open covering of A such that each U, }21;5 the
property stated in Lemma 2. Let {¥,} be an open refinement of
{U.} such that 7, < U, for all i e I. For each subset J of the index
set £, set S, = UJ V. Let T be the set of pairs (7, J) where J < [
and 7 is a section of £ defined on $; such thatr = ocond N S,.
The set T is non-empty; take U, which meets 4 and extend thJe
restriction of o to 4 N 7, to a section on 7,, which is possible by
the property possessed by U,. Introduce an order in 7 as follows :
(+', J/)‘ < (2", J") i J = J" and 7' = 1" on S,. Let (7, J) be
a maximal element (by using Zorn’s Lemma)(. Assume J £ 1
and let e / —J. On the closed set (4 U S,;) N 7, contained in
U,, we have a well defined section ¢,: 6, =0 on 4 N 7, and
o; = 7 on S, NV, Extend o, to a section =, on V, Whilch is
possible by the property possessed by U,. Let J' = J U {i} and

7 beﬂ the section on S, defined by 7" = 7 on §, and +' = +, on
V.. Then (+,J) < (+,J"), which contradicts the maximality of
(7, J). Hence, I = J and 7 is the desired section. QED.

The proof given here was taken from Godement [1, p. 151].

Examp{e 3.5, Let L(M) be the bundle of linear frames over an
n-chm:cnsmnal manifold M. The homogenecous space GL(n; R)/
O(n) is known to be diffeomorphic with a Euclidean spa(’:e of
dimension 4n(n + 1) by an argument similar to Chevalley
[1, p.16]. The fibre bundle E = L(M)/O(n) with fibre
GL(n; R)/O(n), associated with L(M), admits a cross section if M
is paracompact (by Theorem 5.7). By Proposition 5.6, we see that
the structure group of L(M) can be reduced to the orthogonal
group O(n), provided that A is paracompact. )

Example 5.6.  More generally, let P(M, G) be a principal fibre
bundle over a paracompact manifold M with group G which is a
connected Lie group. It is known that G is diffeomorphic with a
dlrec.t product of any of its maximal compact subgroups H and a
Euclidean space (cf. Iwasawa [1]). By the same reasoning as
above, the structure group G can be reduced to H.
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Example 5.7. Let L(M) be the bundle of linear frames over a
manifold M of dimension z. Let (, ) be the natural inner product
in R® for which 81:(1,0,...,0),...,6":(O,...,O,l) are
orthonormal and which is invariant by O(n) by the very definition
of O(n). We shall show that each reduction of the structure
group GL(n; R) to O(n) gives rise to a Riemannian metric g on M.
Let Q(M, O(r)) be a reduced subbundle of L(M). When we
regard each u e L(M) as a linear isomorphism of R* onto T,(M)
where x = m(u), each u ¢ @ defines an inner product g in T,(M)
by

g(X,Y) = (uX, uY) for X, Y e T,(M).

The invariance of ( , ) by O(n) implies that g(X, ¥) is independent
of the choice of u e Q. Conversely, if M is given a Riemannian
metric g, let @ be the subset of L(M) consisting of linear frames
u = (X, ..., X,) which are orthonormal with respect to ¢. If we
regard u e L(M) as a linear isomorphism of R" onto T.(M), then
« belongs to @ if and only if (§, &) = g(ué, u&’) for all £,& e R".
It is-easy to verify that @ forms a reduced subbundle of L(M) over
M with structure group O(n). The bundle @ will be called the
bundle of orthonormal frames over M and will be denoted by Oo(M).
An clement of O(M) is an orthonormal frame. The result here
combined with Example 5.5 implies that every paracompact mantfold
M admits a Riemannian metric. We shall see later that every
Riemannian manifold is a ‘metric space and hence paracompact.
To introduce the notion of induced bundle, we prove

ProposiTron 5.8. Given a principal fibre bundle P(M, G) and a
mapping f of a manifold N into M, there is a unique (of course, unique up
to an isomorphism) principal fibre bundle Q(N, G) with a homomorphism
f: Q — P which induces f: N — M and which corresponds to the identity
automorphism of G. ‘

The bundle Q(N, G) is called the bundle induced by f from P(M, G)
or simply the induced bundle; it is sometimes denoted by f1P.

Proof. 1In the direct product N x P, consider the subset @
consisting of (9, u) ¢ N x P such that f(y) = 7(u). The group G
acts on Q by (3, u) — (y,u)a = (y,ua) for (y,u) e Q and a € G.
It is casy to see that G acts freely on ¢ and that Q is a principal
fibre bundle over N with group G and with projection = given
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by mo(, #) = ». Let Q" be another principal fibre bundle over &
with group G and f': @ — P a homomorphism which induces
f+ N — M and which corresponds to the identity automorphism of
G. Then it is easy to show that the mapping of @’ onto @ defined
by «' — (7 (u'), f' (W), u € @, is an isomorphism of the bundle
Q' onto @ which induces the identity transformation of N and
which corresponds to the identity automorphism of G. QED.

We recall here some results on covering spaces which will be
used later. Given a connected, locally arcwise connected topo-
logical space M, a connected space £ is called a covering space over
M with projection p: E — M if every point x of M has a connected
open neighborhood U such that each connected component of
p~Y(U) is open in E and is mapped homeomorphically onto U
by p. Two covering spaces p: E-—> M and p': E' — M are
wsomorphic if there exists a homeomorphism f: £ - £’ such that
p' o f = p. A covering space p: E — M is a universal covering space
if £ is simply connected. If M is a manifold, every covering space
has a (unique} structure of manifold such that p is differentiable.
From now on we shall only consider covering manifolds.

PROPOSITION 5.9. (1) Given a connected manifold M, there is a
unique (unique up to an isomorphism) universal covering manifold, which
will be denoted by M.

(2) The universal covering manifold M is a principal fibre bundle over M
with group w (M) and projection p: M — M, where (M) is the first
homotopy group of M.

(8) The tsomorphism classes of the covering spaces over M are ina 1:1
correspondence with the conjugate classes of the subgroups of m(M). The
correspondence is_given as follows. To each subgroup H of (M), we
assoctate I = M/[H. Then the covering manifold E corresponding to H is
a fibre bundle over M with fibre m (M)[H associated with the principal
Jibre bundle M(M, =y(M)). If H is a normal subgroup of (M),
E = M[H is a principal fibre bundle with group = (M)[H and is called
a regular covering manifold of M.

For the proof, see Steenrod [1, pp. 67-71] or Hu [1, pp. 89-97].
_The action of =,(M)/H on a regular covering manifold £ =
MJH is properly discontinuous. Conversely, if £ is a connected
manifold and G is a properly discontinuous group of transforma-
tions acting freely on E, then £ is a regular covering manifold of
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M = E|G as follows immediately from the condition (3) in the
definition of properly discontinuous action in §4.
Example 5.8. Consider R" as an n-dimensional vector space

and let &, ..., &, be any basis of R". Let G be the subgroup of -

R» generated by &,,...,&,: G = {Xm, &; m, integers}. The
action of G on R" is properly discontinuous and R" is the universal
covering manifold of R*/G. The quotient manifold R"/G is called
an n-dimensional forus.

Example 5.9. Let S* be the unit sphere in R"*+! with center at
the origin: $* = {(x!, ..., s™) e R"*!; X,(x%)? = 1}. Let G be
the group consisting of the identity transformation of $" and the
transformation of §* which maps (%, ..., ") into (—x%, ...,
—x*+1), Then $"n = 2, is the universal covering manifold of
$7/G. The quotient manifold $"/G is called the n-dimensional real
projective space.

CHAPTER 1II

Theory of Connectionsv

I. Connections in a principal fibre bundle

Let P(M, G) be a principal fibre bundle over a manifold M
with group G. For each u € P, let T, (P) be the tangent space of P
at u and G, the subspace of T',(P) consisting of vectors tangent to
the fibre through w. A connection " in P is an assignment of a
subspace @, of T,(P) to each u ¢ P such that

(a) T (P) = G, + @, (direct sum);

(b) Q.. = (R,) @, for every ue P and a ¢ G, where R, is the
transformation of P induced by a € G, Ru = ua;

(¢) @, depends differentiably on u.

Condition (b) means that the distribution v — @, is invariant
by G. We call G, the vertical subspace and Q., the horizontal subspace
of T,(P). A vector X e T,(P) is called vertical (resp. horizontal) if it
lies in G, (resp. @,). By (a), every vector Xe T, ,(P) can be
uniquely written as

X=Y+2Z where Ye G, and Ze¢@Q

ut

We call Y (resp. Z) the vertical (resp. horizontal) component of X and
denote it by vX (resp. £X). Condition (c) means, by definition,
that if X is a differentiable vector field on P so are vX and hX.
(It can be easily verified that this is equivalent to saying that the
distribution u — @, is differentiable.)

Given a connection I' in P, we define a l-form o on P with
values in the Lie algebra g of G as follows. In §5 of Chapter I, we
showed that every 4 € g induces a vector field 4* on P, called the
fundamental vector field corresponding to 4, and that 4 — (4%),,
is a linear isomorphism of g onto G, for each u e P. For each
XeT,(P), we define w(X) to be the unique 4 eg such that

63
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(A*), is equal to the vertical component of X. It is clear that

w(X) = 0 if and only if X is horizontal. The form o is called the

connection form of the given connection I'.

ProposiTion 1.1, The connection form w of a connection satisfies the
Jollowing conditions :

(") w(d*y =4  forevery Aegq;

(b") (Ry)*w = ad (aNw, that is, w((R,)X) = ad (a) - w(X)
Jor every & € G and every vector field X on P, where ad denotes the adjoint
representation of G in g.

Conversely, given a g-valued 1-form w on P satisfying conditions (')
and (b'); there is a unique connection 1" in P whose connection form is cw.

Proof. Let @ be the connection form of a connection. The
condition (a’) follows immediately from the definition of w. Since
every vector field of P can be decomposed into a horizontal vector
field and a vertical vector field, it is sufficient to verify (b’) in the
followinig two special cases: (1) X is horizontal and (2) X is
vertical. If X is horizontal, so is (R,),X for every a e G by the
condition (b) for a connection. Thus, both w((R,);X) and
ad (@) * w(X) vanish. In the case when X is vertical, we may
further assume that X is a fundamental vector field A4*. Then
(R,) %X is the fundamental vector field corresponding to ad (a—*)4
by Proposition 5.1 of Chapter I. Thus we have :

(Riw) (&) = 0,4((R)xX) = ad (¢)4 = ad (a7") (0, (X)).
Conversely, given a form w satisfying (a’) and (b’), we define
Qu={XeTuP); 0(X) =0}

The verification that u — @, defines a connection whose con-
nection form is w is easy and is left to the reader. QED.

The projection 7: P — M induces a linear mapping =: 7, (P)
— T, (M) for each u € P, where x = w(u). When a connection is
given, 7 maps the horizontal subspace @, isomorphically onto
T, (M),

The horizontal lift (or simply, the [ift) of a vector field X
on M is a unique vector field X* on P which is horizontal and
which projects onto X, that is, #(X}) = X, for every u e P.
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Provosrrion 1.2, Given a connection in P and a vector field X on M,
there is a unique horizontal lyft X* of X. The lift X* is invariant by R,
Sor every a € G. Conversely, every horizontal vector field X* on P invariant
by G is the lift of a vector field X on M:

Proof. The existence and uniqueness of X* is clear from the
fact that = gives a linear isomorphism of @, onto 7 ,(M). To
prove that X* is differentiable if X is differentiable, we take a
neighborhood U«of any given point x of M such that »}(U) ~
U x G. Using this isomorphism, we first obtain a différentiable
vector field Y on #—2(U) such that 7Y = X. Then X* is the hori-
zontal component of ¥ and hence is differentiable. The invariance
of X* by G is clear from the invariance of the horizontal sub-
spaces by G. Finally, let X* be a horizontal vector field on P
invariant by G. For every x e M, take a point u ¢ P such that
w(u) = x and define X, = #(X¥). The vector X, is independent
of the choice of u such that =(x) = x, since if &’ = ua, then
m(XE) = n(R, - X}) = =(X}). It is obvious that X* is then the
lift of the vector field X. QED.

Prorosrrion 1.3, Let X* and Y* be the horizontal lifts of X and ¥
respectively. Then

(1Y X* - Y* is the horizontal lift of X 4+ ¥ ;

(2) For every function fon M, f* - X* is the horizontal lift of fX where
¥ is the function on P defined by f* = fomw;

(3) The horizontal component of [X*, Y*]| is the horizontal lift of
[X, Y].

Proof. The first two assertions are trivial. As for the third, we
have :

w(ALX*, Y*]) = m([X*, T¥]) = [X, Y.
QED.

Let %, ..., x" be a local coordinate system in a coordinate
neighborhood U in M. Let X¥ be the horizontal lift in #—1(U) of
the vector field X; = 9/0«"in Ufor each i. Then X¥, ..., X% form
a local basis for the distribution ¥ — @, in »~Y(U).

We shall now express a connection form o on P by a family of
forms each defined in an open subset of the base manifold M.
Let {U,} be an open covering of M with a family of isomorphisms
y,: Y U,) — U, x G and the corresponding family of transition
functions y,s: U, N Uy — G. For each «, let ¢,: U, — P be the
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cross section on U, defined by o,(x) = v, (, ), x € U,, where ¢
is the identity of G. Let 0 be the (left invariant g-valued) canonical
I-form on G defined in §4 of Chapter I (p. 41).
For each non-empty U, N U;, define a g-valued I-form
0,5 on U, N Uy by
O = Wi,

For each «, define a g-valued l-form w, on U, by

= orfw.

Proposrrion 1.4, The forms 0,5 and w, are subject to the conditions :
wg = ad (y") o, + 04 on U, N U,

Conversely, for every family of g-valued 1-forms {w,} each defined on U,
and satisfying the preceding conditions, there is a unique connection form w
on P which gives rise to {w,} in the described manner.

Proof. If U, N Uy is non-empty, o4(x) = 0,(x)y,s(x) for all
x € U, N Uz Denote the differentials of o,, 05, and g, by the
same letters. Then for every vector X ¢ T,(U, N Up), the vector
04(X) e T,(P), where u = o4(x), is the image of (g,(X), (X)) €
T,.(P)+ T,G), where u' = 0,(x) and a = y,,(x), under the
mapping P x G — P. By Proposition 1.4 (Leibniz’s -formula)
of Chapter I, we have

05(X) = 0 (X)pup(¥) + 0u(%)pes(X),

where o,(X)y,;(x) means R, (0,(X)) and o,(x)yp,;(X) is the image
of y,s(X) by the differential of o,(x), 0,(x) being considered as a
mapping of G into P which maps b ¢ G into o,(x)b. Taking the
values of @ on both sides of the equality, we obtain

05(&X) = ad (o) "o (X) + 0,5(X).

Indeed, if 4 € g is the left invariant vector field on G which is
equal to y,(X) at a = y,(x) so that O(yp,(X)) = 4, then
0, (%)p,s(X) is the value of the fundamental vector field 4* at
u = 0,(x)p,s(x) and hence w(o,(x)p,s(X)) = 4.

The converse can be verified by following back the process of
obtaining {w,} from w. QED.
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2. Existence and extension of connections

Let P(M, G) be a principal fibre bundle and 4 a subset of M.
We say that a connection is defined over 4 if, at every point u ¢ P
with 7 (u) € 4, a subspace @, of T',(P) is given in such a way that
conditions (a) and (b) for connection (see §1) are satisfied and @,
depends differentiably on « in the following sense. For every point
x € A, there exist an open neighborhood U and a connection in
P|U =a*U) such that the horizontal subspace at every
u e 71(4) is the given space Q.

Tuareorem 2.1.  Let P(M, G) be a principal fibre bundle and A a
closed subset of M (A may be empty). If M is paracompact, every connec-
tion defined over A can be extended to a connection in P. In particular, P
admits a connection if M is paracompact.

Proof. The proof is a replica of that of Theorem 5.7 in Chap-
ter I.

Lemma 1. A differentiable function defined on a closed subset of R"
can be always extended to a differentiable function on R" (cf. Appendix 3).

Lemma 2. Every point of M has a neighborhood U such that every
connection defined on a closed subset contained in U can be extended to a
connection defined over U. :

Proof. Given a point of M, it suffices to take a coordinate
neighborhood U such that »=1(U) is trivial: #=3(U) ~ U X G.
On the trivial bundle I/ x G, a connection form o is completely
determined by its behavior at the points of U x {¢} (e: the
identity of G) because of the property R¥(w) = ad (a7})w
Furthermore, if o: U — U x G is the natural cross section, that
is, o(x) = (x, ) for x ¢ U, then w is completely determined by the
g-valued 1-form o*w on U. Indeed, every vector X € T, (U x G)
can be written uniquely in the form

X =Y+ Z,
where Y is tangent to U x {¢} and Z is vertical so that ¥ =
o4 (m4X). Hence we have
w(X) = o(ox (74 X)) + o(Z) = (o¥0) (7 X) + 4,
where 4 is a unique element of g such that the corresponding
fundamental vector field 4* is equal to Z at o(x). Since 4 depends.
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only on Z, not on the connection, w is completely determined by
o*w. The equation above shows that, conversely, every g-
valued l-form on U determines uniquely a connection form on
U x G. Thus Lemma 2 is reduced to the extension problem for
g-valued I-forms on U. If {4,} is a basis for g, then v = X w4,
where each ’ is a usual I-form. Thus it is sufficient to consider
the extension problem of usual 1-forms on U. Let x', ..., x" be a
local coordinate system in U. Then every l-form on U is of the
form X f, dx* where each f; is a function on U. Thus our problem
is reduced to the extension problem of functions on U. Lemma 2
now follows from Lemma 1.

By means of Lemma 2, Theorem 2.1 can be proved exactly in
the same way as Theorem 5.7 of Chapter I. Let {U};.; be a
locally finite open covering of M such that each U, has the
property stated in Lemma 2. Let {V;} be an open refinement of
{U,} such that ¥, < U,. For each subset J of [, set S, = |J V..

ied
Let T be the set of pairs (r, J) where J = Iand = is a connection
defined over S; which coincides with the given connection over
4 n S, Introduce an order in 7" as follows: (', J') < (=", J")
ifJ' < J"and 7" = 7" on §,.. Let (7, J) be a maximal element of
T. Then J = I as in the proof of Theorem 5.7 of Chapter 1 and
T is a desired connection. - QED.

Remark. 1t is possible to prove Theorem 2.1 using Lemma 2
and a partition of unity { f;} subordinate to {V;} (cf. Appendix 3).
Let w, be a connection form on #~1(U;) which extends the given
connection over 4 N V,. Then w = I, g, is a desired con-
nection form on P, where each g, is the function on P defined by

g = fiom k
3. Parallelism

Given a connection I in a principal fibre bundle P(M, G), we
shall define the concept of parallel displacement of fibres along any
given curve 7 in the base manifold A/

Let » =x,, a =t = b, be a pilecewise differentiable curve of
class G in M. A horizontal lift or simply a lift of = is a horizontal
curve ™ =y, a = { = b,in Psuch that #(u,) = x,fora < ¢t < b,
Here a horizontal curve in P means a piecewise differentiable
curve of class 1 whose tangent vectors are all horizontal..
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The notion of lift of a curve corresponds to the notion of lift of a

- vector field. Indeed, if X* is the lift of a vector field X on A4, then

the integral curve of X* through a point u, ¢ P is a lift of the
integral curve of X through the point x, = 7 (u,) ¢ M. We now
prove

Proposirion 3.1, Let 7 =x, 0 =t = 1, be a curve of class C*
in M. For an arbitrary point u, of P with mw(u,) = x,, there exists a
unique lift v = u, of = which starts from u,.

Proof. By local triviality of the bundle, there is a curve o, of
class (* in P such that vy = u, and #(v,) = x,for 0 < ¢t =< 1. A
lift of =, if it exists, must be of the form u, = v,a,, where a,is a
curve in the structure group G such that ¢, = e. We shall now look
for a curve a, in G which makes u, = v,a, a horizontal curve. Just
as in the proof of Proposition 1.4, we apply Leibniz’s formula
(Proposition 1.4 of Chapter I) to the mapping P X G — P which
maps (v, 4) into va and obtain

Uy = Ua; + v,d,,

where each dotted italic letter denotes the tangent vector at that
point (e.g., #, is the vector tangent to the curve =% = u, at the
point «,). Let  be the connection form of I'. Then, as in the proof
of Proposition 1.4, we have

w(t,) = ad(atul)w(vvt) + a; "4,

where ¢;%d, is now a curve in the Lie algebra g = T,(G) of G.

The curve u, is horizontal if and only if 4., ' = —w(s,) for every £,
The construction of u, is thus reduced to the following

Levma.  Let G be a Lie group and g its Lie algebra identified with
T,(G). Let Y, 0 < ¢ = 1, be a continuous curve in T,(G). Then there
exists in G a unique curve a, of class C such that a, = ¢ and dait =Y,
Jor 0 = ¢ < 1.

Remark. 1In the case where ¥, = A4 for all ¢, the curve a, is
nothing but the 1-parameter subgroup of G generated by 4. Our
differential equation d,g ! = Y, is hence a generalization of the
differential equation for 1-parameter subgroups.

Proof of Lemma. We may assume that ¥, is defined and
continuous for all ¢, —oo0 < ¢ < co0. We define a vector field X on
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G x R as follows. The value of X at (4, t) e G x R is, by defini-
tion, equal to (Y@, (d/dz),) € T,(G) x T,(R), where z is the
natural coordinate system in R. It is clear that the integral curve
of X starting from (e, 0) is of the form (a,, t) and a, is the desired
curve in G. The only thing we have to verify is that a, is defined
for all ¢, 0 = ¢t = 1. Let ¢, = exp tX be a local l-parameter
group of local transformations of G X R generated by X. For
each (e, 5) e G x R, there is a positive number 6s.s.uch that
@.(e, 7) is defined for |r — 5| < &, and [¢| < d, (Propos.mon 1.5 of
Chapter I). Since the subset {¢} x [0, 1] of G x R is compact,
we may choose 6 > 0 such that, for each 7 [0, 1], @ie,7) is
defined for |¢f] < 6 (cf. Proof of Proposition 1.6 of Chapter I).
Choose g, 1, -+ - , 5 such that 0 = sy <s5; < -+ <s5, =1 and
s; — $;_, < 6 for every i. Then ¢,(e, 0) = (a, t) is defined for
0=t=sy;0465) =(b,u+s)isdefinedfor0 = u = s, — 54,
where b,b;! =Y, , and we define a, = b,_, a, fors; = { = s;

3 @u(ls Si1) = (4 Sp—1 + w)isdefined for 0 = u = 5, — 544,
where ¢t =Y, ., , and we define a, =¢,_, a, , thus
completing the construction of ¢, 0 = ¢ = 1. QED.

Now using Proposition 3.1, we define the parallel displacement
of fibres as follows. Let 7 =, 0 = ¢ = I, be a differentiable
curve of class C* on M. Let u, be an arbitrary point of P with
7(uy) = x,. The unique lift 7* of = through u, has the end point
u, such that =(u;) = x;. By varying u, in the fibre 77%(x), we
obtain a mapping of the fibre #~(x,) onto the fibre #~*(x,) which
maps u, into ;. We denote this mapping by the same letter = and
call it the parallel displacement along the curve 7. The fact that
70w Y(xy) — 7 (x,) is actually an isomorphism comes from the
following

Prorosition 3.2.  The parallel displacement along any curve T
commutes with the action of G on P: 7o R, = R, o 7 for every a € G.

Proof. This follows from the fact that every horizontal curve
is mapped into a horizontal curve by R,. QED.

The parallel displacement along any piecewise differentiable
curve of class C* can be defined in an obvious manner. It sho}ul.d
be remarked that the parallel displacement along a curve 7 is
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independent of a specific parametrization x, used in the following
sense. Consider two parametrized curves x,, a = ¢t =< b, and Vs
¢ =5 = d,in M. The parallel displacement along x, and the one
along y, coincide if there is a homeomorphism ¢ of the interval
[a, 6] onto [¢, d] such that (1) ¢(a) = ¢ and @(b) = d, (2) both
¢ and ¢! are differentiable of class 1 except at a finite number
of parameter values, and (3) y, = x, for all {, a < t < b.

If 7 is the curve x,, @ = ¢ = b, we denote by 7! the curve y,
a =t = b, defined by y, = x,,, ,. The following proposition is
evident.

Prorostrion 3.3.  (a) If 7 is a piecewise differentiable curve of class
G'in M, then the parallel displacement along + is the inverse of the
parallel displacement along +.

(b) If = is a curve from x to y in M and w is a curve from y to z in M,
the parallel displacement along the composite curve y - 7 is the composite of
the parallel displacements + and u.

4. Holonomy groups

Using the notion of parallel displacement, we now define the
holonomy group of a given connection I' in a principal fibre
bundle P(M, G). For the sake of simplicity we shall mean by a
curve a piecewise differentiable curve of class C*, 1 = k < oo
(k will be fixed throughout §4).

For each point x of M we denote by C(x) the loop space at x,
that is, the set of all closed curves starting and ending at x. If =
and p are elements of C(x), the composite curve u - 7 (= followed
by u) is also an element of C(x). As we proved in §3, for each
7€ ((x), the parallel displacement along 7 is an isomorphism of
the fibre #~1(x) onto itself. The set of all such isomorphisms of
7t (x) onto itself forms a group by virtue of Proposition 3.3. This
group is called the holonomy group of T with reference point x. Let
(°(x) be the subset of C(x) consisting of loops which are homotopic
to zero. The subgroup of the holonomy group consisting of the
parallel displacements arising from all +eC%x) is called the
restricted holonomy group of T' with reference point x. The holonomy
group and the restricted holonomy group of I' with reference
point x will be denoted by ®(x) and ®°(x) respectively.
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It is convenient to realize these groups as subgroups.of the
structure group G in the following way. Let u b(? an arbitrarily
fixed point of the fibre 7= (x). Each 7 ¢ ((x) determines an elemfint,
say, a, of G such that 7(u) = ua. If a loop peC(x) determines
b ¢ G, then the composite y * 7 determines ba .b.ecause (,u; 7)(u) =
u(ua) = (u(u))a = uba by virtue of Proposition 3.2. The set of
elements @ € G determined by all = e C(x) forms a sul?group of G
by Proposition 3.3. This subgroup,.denoted by @(u),-ls called the
holonomy group of T with reference point u € P. The restricted ho{onomy
group ®°(u) of I' with reference point u can be defined acc?rdmgly.
Note that ®(x) is a group of isomorphisms of the fibre ™ (%) onto
itself and ®(x) is a subgroup of G. It is clear that there is a unique
isomorphism of @(x) onto ®(x) which makes the following
diagram commutative:

C(x)
¥ N
O(x) — D(u).

Another way of defining ®(u) is the following: When two points
u and v of P can be joined by a horizontal curve, we write u ~ v.
This is clearly an equivalence relation. Then @ (u) 1s‘equa:l to the set
of a € G such thatu ~ ua. Using the fact thatu ~ vimplies ua ~ va
for any u, v e P and a ¢ G, it is easy to verify once more that this
subset of G forms a subgroup of G.

ProrosiTioN 4.1. (a) If v = ua, ae G, then ®(v) = a‘d (a“l).((l?(u)),
that is, the holonomy groups ®(v) and ©(u) are conjugate in G. Similarly,
@3(5) = ad (a)(0(u). N |

(b) If two points u and v of P can be joined by a horizontal curve, then
O(u) = D(v) and P(u) = D(v).

Proof. (a) Let b e ®(u) so thatu ~ ub. Then ua ~ (ub)a so that
v ~ (va~Y)ba = va‘ba. Thus ad (a)() € D(v). It follovlvs e?sﬂy
that ®(») = ad (=) (®(u)). The proof for ®*(v) = ad () (D(x))
is similar. ' ‘ _

(b) The relation u ~ v implies ub ~ vb for every b e G. Since tbe
relation ~ is transitive, u ~ ub if and only if v~ vb, that is,
b e ®(x)if and only if 4 ¢ ®(v). To prove ®°(u) = ®°(v), let ,u*. be
a horizontal curve in P from u to v. If b € ®°(u), then there is a
horizontal curve 7* in P from u to b such that the curve =(7*) in
M is a loop at w(u) homotopic to zero. Then the composite
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(Ryu*) - 7%« w*=' is a horizontal curve in P from v to v6 and its
projection into M is a loop at (o) homotopic to zero. Thus
b e ®(v). Similarly, if ¢ ®°(»), then 6 ¢ DO(u). QED.

If M is connected, then for every pair of points « and v of P,
there is an element a € G such that v ~ ua. It follows from Propo-
sition 4.1 that if M is connected, the holonomy groups ®(u), u ¢ P,
are all conjugate to each other in G and hence isomorphic with
each other.

The rest of this section is devoted to the proof of the fact that
the holonomy group is a Lie group.

Tueorem 4.2, Let P(M, G) be a principal fibre bundle whose base
manifold M is connected and paracompact. Let ®(u)and D°(u), u e P, be
the holonomy group and the restricted holonomy group of a connection 1" with
reference point u. Then

(a) DO(u) is a connected Lie subgroup of G ;

(b) ©°(u) is a normal subgroup of ®(u) and O (u) | D(u) is countable.

By virtue of this theorem, ®(u) is a Lie subgroup of G whose
identity component is ®(x).

Proof. We shall show that every element of ®O(u) can be
Joined to the identity element by a piecewise differentiable curve
of class C* in G which lies in ®°(x). By the theorem in Appendix 4,
it follows then that ®°(x) is a connected Lie subgroup of G.

Let a € ®°(u) be obtained by the parallel displacement along a
piecewise differentiable loop = of class C* which is homotopic to 0.
By the factorization lemma (Appendix 7), = is (equivalent to) a
product of small lassos of the form +;!- u - 7,, where 7,15 a
piecewise differentiable curve of class C* from x = w(u) to a point,
say, », and u is a differentiable loop at y which lies in a coordinate
neighborhood of y. It is sufficient to show that the element of
®°(u) defined by each lasso 77" - 4 - 7, can be joined to the identity
element. This element is obviously equal to the element of D0 (v)
defined by the loop u, where v is the point obtained by the parallel
displacement of u along =,. It is therefore sufficient to show that
the element b ¢ ®°(v) defined by the differentiable loop u can be

joined to the identity element in ®°(s) by a differentiable curve
of G which lies in @°(»).

Let 4% ..., %" be a local coordinate system with origin at y
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and let u be defined by % = x(¢), 1 = 1, ..., n. Setf(t,s) =5 +
(1 —s)xi(t) for i =1,...,nand 0 = ¢ s = 1. Then f(t,5) =
(fYt,s), ..., f(t$)) is a differentiable mapping of class C* of
I x Iinto M (where I = [0, 1]) such that f(¢, 0) is the curve u
and £ (¢, 1) is the trivial curve y. For each fixed s, let b(s) be the
element of ®°(») obtained from the loop f (¢, 5), 0 = ¢ = 1, so
that #(0) = b and 4(1) = identity. The fact that b(s) is of class C*
in s (as a mapping of / into G) follows from the following

LemMa. Let f: I x I — M be a differentiable mapping of class C*
w(uy(s)) = f (0, s). For each fixed s, let uy(s) be the point of P obtained
by the parallel displacement of ug(s) along the curve f(t,s), where
0 =< ¢ = 1 andsis fixed. Then the curve u,(s), 0 = s = 1, is differenti-
able of class C*.

Proof of Lemma. Let F:I x I—P be a differentiable
mapping of class C* such that 7(F(z, 5)) = f (¢, 5) forall (¢,5) € I X
I and that F (0, s) = u,(s). The existence of such an F follows
from local triviality of the bundle P. Set v,(s) = F (¢, s). In the
proof of Proposition 3.1, we saw that, for each fixed s, there is a
curve a,(s), 0 = ¢ = 1, in G such that ¢,(s) = ¢ and that the
curve v,(s)a,(s), 0 = ¢ = 1, is horizontal. Set u,(s) = v,(s)a,(s). To
prove that u,(s), 0 < s = 1, is a differentiable curve of class
C*, it is sufficient to show that a,(s), 0 = s = 1, is a differentiable
curve of class C* in G. Let o be the connection form of I'. Set
Y, (s) = —w(d,(s)), where 4,(s) is the vector tangent to the curve
described by 2,(s), 0 = ¢ = 1, when s is fixed. Then as in the
proof of Proposition 3.1, a,(s) is a solution of the equation
d,(5)a,(s)™* = Y,(s). As in the proof of the lemma for Proposition
3.1, we define, for each fixed s, a vector field X(5s) on G x R so that
(a,(s), t) is the integral curve of the vector field X(s) through the
point (¢, 0) € G x R. The differentiability of a,(s) in s follows from
the fact that each solution of an ordinary linear differential
equation with parameter sis differentiable in s as many times as the
equation is (cf. Appendix 1). This completes the proof of the
lemma and hence the proof of (a) of Theorem 4.2.

We now prove (b). If 7 and u are two loops at x and if u is
homotopic to zero, the composite curve = - u - 77 is homotopic
to zero. This implies that ®°(x) is a normal subgroup of ®(u).

and uy(s), 0 = s < 1, a differentiable curve of class C* in P such that
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Let 7, (M) be the first homotopy group of M with reference point
x. We define a homomorphism f: 7, (M) — ®(u)[D%(u) as follows.
For each element « of 7, (M), let 7 be a continuous loop at x which
represents «. We may cover = by a finite number of coordinate
neighborhoods, modify 7 within each neighborhood and obtain a
piecewise differentiable loop 7, of class C* at x which is homotopic
to 7. If 7, and , are two such loops, then =, + 757! is homotopic to
zero and defines an element of ®°(x). Thus, 7, and 7, define the
same element of ®(u)/®%(u), which is denoted by f («). Clearly, f
1s @ homomorphism of 7 (M) onto ®(u)/®%(u). Since M is con-
nected and paracompact, it satisfies the second axiom of count-
ability (Appendix 3). It follows easily that (M) is countable.
Hence, ®(u)/®°(x) is also countable. QED.

Remark. In §3, we defined the parallel displacement along any
piecewise differentiable curve of class C1. In this section, we
defined the holonomy group ®(u) using piecewise differentiable
curves of class C*. If we denote by ®,(«) the holonomy group thus
obtained from piecewise differentiable curves of class C¥, then we
have obviously ®,(u) > ®y(u) @ -+ > @ (u). We shall prove
later in §7 that these holonomy groups coincide.

5. Curvature form and structure equation

Let P(M, G) be a principal fibre bundle and p a representation
of G on a finite dimensional vector space V; p(a) is a linear
transformation of V for each aeG and p(ab) = p(a)p(b) for
a,b € G. A pseudotensorial form of degree r on P of type (p, V) is a V-
valued r-form ¢ on P such that

Rip = pla™) - ¢ for a e G.

Such a form ¢ is called a tensorial form if it is horizontal in the sense
that ¢(X;, ..., X,) = 0 whenever at least one of the tangent
vectors X, of P is vertical, i.e., tangent to a fibre.

Example 5.1, If p, is the trivial representation of G on V, that
is, po(a) is the identity transformation of V for each a € G, then a
tensorial form of degree 7 of type (p,, V) is nothing but a form ¢
on P which can be expressed as ¢ = n*p,, where g,, is a V-valued
r-form on the base M.
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Example 5.2. Let p be a representation of G on V and E the
bundle associated with P with standard fibre ¥ on which G acts
through p. A tensorial form ¢ of degree r of type (p, V) can be
regarded as an assignment to each x e M a multilinear skew-
symmetric mapping @, of T,(M) x «-+ x T,(M) (r times)
into the vector space =5 *(x) which is the fibre of £ over x. Namely,
we define

Go(Xy, oo, X)) = u(p(XE, ..., X5), X, e T (M),

where u is any point of P with #(x) = x and X} is any vector at u
such that »(X}) = X, for each ¢. @(X¥, ..., X*) is then an
element of the standard fibre ¥ and u is a linear mapping of V
onto 75 *(x) so that u(ep(X¥, - - -, X¥)) is an element of =5 (x). It
can be easily verified that this element is independent of the

choice of v and X¥. Conversely, given a skew-symmetric multi--

linear mapping @, 7,(M) X -+ x T (M) — 7z'(x) for each
x e M, a tensorial form ¢ of degree r of type (p, V) on P can be
defined by

P(&T, o, X)) = uH@o(m(XT), oo, m(XD))),  XFe T(P),

where ¥ = #(u). In particular, a tensorial O-form of type (p, V),
that is, a function f: P — V such that f (ua) = p(a™)f (4), can be
identified with a cross section M — E.
A few special cases of Example 5.2 will be used in Chapter III.
Let I’ be a connection in P(M, G). Let G, and @, be the
vertical and the horizontal subspaces of T',(P), respectively. Let
k: T,(P) — @, be the projection.

ProrosiTion 5.1.  If ¢ is a pseudotensorial r-form on P of type
(p, V), then

(a) The form @h defined by (ph)(X,, ..., X,) = ¢(hXy, ..., hX,),
X, e T (P), 15 a tensorial form of type (p, V) ;

(b} do is a pseudotensorial (r -+ 1)~form of type (p, V' ;

(c) The (r + 1)-form Dy defined by Do = (de)h is a tensorial form of
tpe (p, V).

Proof. TFrom R,ch =hoR, aeG, it follows that ¢k is a
pseudotensorial form of type (p, V), It is evident that

(qjh) (XD ceey Xr) = 0:

II. THEORY OF CONNECTIONS 77

if one of X;’s is vertical. (b) follows from R¥ od = d o R¥, a e G.
(c) follows from (a) and (b). QED.

The form Do = (dp)h is called the exterior covariant derivative of
@ and D is called exterior covariant differentiation.

If p is the adjoint representation of & in the Lie algebra g, a
(pseudo) tensorial form of type (p, g) is said to be of type ad G. The
connection form o is a pseudotensorial I-form of type ad G. By
Proposition 5.1, Dw is a tensorial 2-form of type ad & and is
called the curvature form of w.

TueoreM 5.2 (Structure equation). Let w be a connection form and
Q ts curvature form. Then

do(X, ¥) = —}o(X), o(1)] + QX, Y)
for X,Y e T,(P), ueP.

Proof. Every vector of P is a sum of a vertical vector and a
horizontal vector. Since both sides of the above equality are
bilinear and skew-symmetric in X and Y, it is sufficient to verify
the equality in the following three special cases.

(1) X and Y are horizontal. In this case, w(X) = w(Y) = 0 and
the equality reduces to the definition of Q.

(2) X and Y are vertical. Let X = 4* and ¥ = B* at u, where
A,B ¢ g. Here A* and B* are the fundamental vector fields corre-
sponding to 4 and B respectively. By Proposition 3.11 of Chapter
I, we have ,

2dw (4%, B¥) = A*(0(B*)) — B*(o(4¥)) — o([4¥, B*])
= —[4, B] = —[o(4*), o(B*)],
since w(d*) = A, w(B*) = B and [4%, B*] = [4, B]*. On the
other hand, Q(4%, B*) = 0.

(3) Xishorizontal and Y is vertical. We extend X to a horizontal
vector field on P, which will be also denoted by X. Let ¥ = A4*
at u, where 4 ¢ g. Since the right hand side of the equality vanishes,
it is sufficient to show that dw(X, 4*) = 0. By Proposition 3.11 of
Chapter I, we have

2dw(X, 4%) = X(w(4%)) — A*(o(X)) — o([X, 4%])
— —o([X, 4%]).

Now it is sufficient to prove the following
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LemMa. If A* is the fundamental vector field corresponding to an
element A € g and X is a horizontal vector field; then [ X, A*] is horizontal.

Proof of Lemma. The fundamental vector field A% is induced
by R,, where a, is the 1-parameter subgroup of & generated by
A e g. By Proposition 1.9 of Chapter I, we have

[X, 4%] = lim; [R,(X) — X].

t->0
If X is horizontal, so is B, (X). Thus [X, 4*] is horizontal. ~QED.

CoroLLARY 5.3. Ifbofh X and Y are horizontal vector fields on P,
then
o([X, Y]) = —2Q(&, ¥).
Proof. Apply Proposition 1.9 of Chapter I to the left hand side
of the structure equation just proved. QED.

The structure equation (often called “the structure equ.agion of
E. Cartan”) is sometimes written, for the sake of simplicity, as
follows:

do = 3w, 0] + Q.
Let eq, . .., ¢ be a basis for the Lie algebra g and ¢, i, J, k=
1,...,r the structure constants of g with respect to.ey, .« - €y

that is,
[es5 ex) :Eic;'keu Jok=1 T
Let w = %, w'e, and Q = X, Q,. Then the structure equation
can be expressed as follows:
dot = —§%,, cfkwj A w* + QF i=1,...,7.

TuroreM 5.4 (Bianch’s identity). D = 0.

Proof. By the definition of D, it suflices to prove that
dQ(X, ¥, Z) = 0 whenever X, Y, and Z are all horizontal vectors.
We apply the exterior differentiation d to the structure equation.
Then

0 = ddw' = —3% ¢ dw’ A o + 3% chw? A dow® + dQ'.
Since »'(X) = 0 whenever X is horizontal, we have
dQ¥ (X, Y, Z) =0

whenever X, Y, and Z are all horizontal. -

QED.
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ProrosiTION 5.5.  Let w be a connection form and ¢ a tensorial 1-
form of type ad G. Then :

Dp(X, Y) = dp(X, Y) + §[p(X), o(Y)] + $lo(X), ¢(¥)]
Jor X,)Y e T, (P), uelP.

Proof. As in the proof of Theorem 5.2, it suffices to consider
the three special cases. The only non-trivial case is the case where
X is vertical and Y is horizontal. Let X = A* at 4, where 4« g.
We extend Y to a horizontal vector field on P, denoted also by Y,
which is invariant by &,, a ¢ G. (We first extend the vector 7Y to
a vector field on M and then lift it to a horizontal vector field on
P.) Then [4* Y] = 0. As 4% is vertical, Dp(4*, ¥) = 0. We
shall show that the right hand side of the equality vanishes. By
Proposition 3.11 of Chapter I, we have '

dp(A*, Y) = $(4*(p(Y)) — Y(p(4¥)) — @([4%, Y]) = 34*(¢(Y)),
so that it suffices to show A*(e(Y)) + [w(4*), (Y)] =0 or
A*(p(Y)) = —[4, ¢(Y)]. If a, denotes the 1-parameter subgroup
of G generated by A, then

A7) =1Tim 3 [7un (1) — (D)) =lim 2 [(RE9) (T) — 9 (T)]

— lim 2 [ad (67 (pu( 7)) — pu(T)] = —[4, pu(T)],

10 ¢

since Y is invariant by R, . QED.

6. Mappings of connections

In §5 of Chapter I, we considered certain mappings of one
principal fibre bundle into another such as a homomorphism, an
injection, and a bundle map. We now study the effects of these
mappings on connections.

Proposttion 6.1, Let /2 P(M',G") — P (M, G) be a. homo-
morphism with the corresponding homomorphism f: G — G such that the
induced mapping f: M' — M ic a diffeomorphism of M’ onto M. Let
I be a connection in P', ' the connection form and €' the curvature form
of 1. Then

(a) There is a unique connection I in P such that the horizontal sub-
spaces of TV are mapped into horizontal subspaces of T" by f.
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(b) If w and Q are the connection form and the curvature form of T'
respectively, then f*w = f- o' and f¥Q = f-Q', where f+ ' or
S+ Q" means L‘he a'-valued form on P’ defined by ( f+ o) (X') =f (0’ (X))
or (f+ QXY =f(QX, YY), where f on the right hand side 1s
the homomorphzsm q' — g induced by f: G' — G.

() If u' e P' and u = f(u') € P, then f. G' — G maps ®(u') onto

O(u) and O°(u') onto DO(u), where ©(u) and DO(u) (resp. ®(u') and
DO(u')) are the holonomy group and the restricted holonomy group of T’
(resp. 1) with reference point u (resp. u').

Proof. (a) Given a point u € P, choose 1’ ¢ P' and a e G such
that # = f (u')a. We define the horizontal subspace @, of T,(P)
by @, = R,°f(Q,), where @, is the horizontal subspace of
T, (P") with respect to 1. We shall show that @, is independent
of the choice of #' and a. If u = f ('}, where v" ¢ P’ and b € G,
then v = u'c’ for some ¢’ € G'. If we set ¢ = f(¢'), then u =
S =f(u'c")b =f(u')chband hencea = cb. Wehave R,o f (@) =
Rb Of(Qu’c') = Rb OfoRc'(Qu’) = Rb ° Rc of(Qu’) = Ra Of(Qu'):
which proves our assertion. We shall show that the distribution
u — @, is a connection in P. If u = f (u')a, then ub = f (u')ab and
Qub = Rab Of(Qu’) = Rb ° Ra Of(@u’) = Rb(Qu)} thus PYOVing thC
invariance of the distribution by G. We shall now prove 7', (P) =
Q. + G,, where G, is the tangent space to the fibre at u. By local
triviality of P, it is sufficient to prove that the projection w: P — M
induces a linear isomorphism =: @, — 7T,(M), where x = =(u).
We may assume that u = f («') since the distribution u — @, is
invariant by G. In the commutative diagram

Qu —> @y
L ;
T (M) > T, (),

the mappings #': @, — T, (M’) and f: T, ,(M') — T, (M) are
linear isomorphisms and hence the remaining two mappings
must be also linear isomorphisms. The uniqueness of I' is evident
from its construction.

(b) The equality f*w = f - &’ can be rewritten as follows:

w(fX') =flo'(X"))  for X'e T (P, u' P
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It is sufficient to verify the above equality in the two special cases:
(1) X’ is horizontal, and (2) X’ is vertical. Since f: P’ — P maps
every horizontal vector into a horizontal vector, both sides of the
equality vanish if X' is horizontal. If X' is vertical, X' = A'* at«/,
where 4" e g’. Set 4 = f(A4") e g. Since f (¥'a’) = f(u')f (a’) for
every a’ € G’y we have f (X') = 4* at f («'). Thus

o(fX) = o(d*) = 4 = f(4d') =f(o'(d*)) =f("(X)).
From f*w = f- ', we obtain d(f*w) = d(f- o) and f*dw =
S+ dw’. By the structure equation (Theorem 5.2):

=3/ ([0, o]) +/*Q = =3 /([0 &]) +f- Q)

we have

Ao, o] + 1 = =3 f- o' f 0] +f- Q.
This implies that f*¥Q = f- Q'.

(¢) Let 7 be a loop at x = w(u). Set #" = f~1(r) so that +" is a
loop at x" = #'(¥'). Let #'* be the horizontal lift of +* starting
from «'. Then f (7'*) is the horizontal lift of = starting from u. The
statement (c) is now evident. QED.

In the situation as in Proposition 6.1, we say that f maps the
connection [ into the connection I'. In particular, in the case
where P'(M’', G') is a reduced subbundle of P(M, G) with in-
jection fso that M’ = M and f: M’ — M is the identity trans-
formation, we say that the connection I' in P is reducible to the
connection I'V in P’. An automorphism f of the bundle P(M, G) is
called an automorphism of a connection I' in P if it maps I' into I', and
in this case, I' is said to be invariant by f.

Prorposttion 6.2. Let f: P(M',G") — P(M,G) be a homo-
morphism such that the corresponding homomorphism f: G' — G maps G’
isomorphically onto G. Let I be a connection in P, w the connection form
and £ the curvature form of I'. Then

(a) There is a unique connection 1" in P’ such that the horizontal sub-
spaces of T are mapped into horizontal subspaces of T' by f.

(b) If " and Q' are the connection form and the curvature form of 1
respectively, then f*w = f+ o’ and f*Q = f- Q.

(c) If w' € P’ and u = f(u') € P, then the isomorphism f: G' — G
maps O(u’) into O(u) and O°(u’) into O°(u).
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Proof. We define I'" by defining its connection form w’. Set
o' = f1-f*w, where f~': g — g'is the inverse of the isomorphism
f: ¢ — g induced from f: G' — G. Let X' e T,,(P') and a' € G’
and set X = fX' and a = f (a’). Then we have

o (RyX') = fHo(f(RyX"))) = [ o(RX))
= f(ad (@) (0(X))) = ad (") (/7 (@ (X))
= ad (&) (0(X)).

Let A’ ¢ g’ and set 4 = f(A4’). Let A* and A"* denote the funda-
mental vector fields corresponding to 4 and A’ respectively. Then

wehave gy o 10 (A%) = f1(A) = A,

This proves that the form ' defines a connection (Proposition 1.1).
The verification of other statements is similar to the proof of
Proposition 6.1 and is left to the reader. QED.

In the situation as in Proposition 6.2, we say that I is induced
by ffrom I'. If fis a bundle map, thatis, ¢’ = G and f: G' — G is
the identity automorphism, then o’ = f*w. In particular, given a
bundle P(M, G) and a mapping f: M’ — M, every connection
in P induces a connection in the induced bundle f~1P.

For any principal fibre bundles P (M, G) and @ (M, H),
P x Qisa principal fibre bundle over M x M with group G x H.
Let P -+ Q be the restriction of P x @ to the diagonal AM of
M x M. Since AM and M are diffeomorphic with each other in
a natural way, we consider P + @ as a principal fibre bundle
over M with group G x H. The restriction of the projection P X
Q — P to P -+ @, denoted by fp, is a homomorphism with the
corresponding natural homomorphism fg: G x H — G. Simi-
larly, for f,: P + Q@ — @ and f: G X H— H.

ProrosiTioN 6.3. Let T'p and Ty be connections in P(M, G) and

Q(M, H) respectively. Then

(a) There is a unique connection T in P 4 Q such that the homo-
morphisms fp: P 4+ Q@ — P and fo: P + Q — Q maps I into I'p and
I respectively.

(b) If w, o p and w , are the connection forms and Q, Qp, and £, are
the curvature forms of U, T p, and T respectively, then

w = fiop + féwg, Q = f3Qp + f5Q,.
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(c) Let ue P, ve @, and (u,v) e P + Q. Then the holonomy group
O(u, v) of T' (resp. the restricted holonomy group ®°(u, v) of I') s a
subgroup of ®(u) X O(v) (resp. Pu) x Dv)). The homomorphism
Jo: G x H—>G (resp. fry: G x H— H) maps ®(u,v) onto O{u)
(resp. onto ®(v)) and ©°(u, v) onto D°(u) (resp. onto D°(v)), where.
O (u)and DO(u) (resp. D(v) and D°(v))are the holonomy group and the
restricted holonomy group of T'p (resp. T'y).

The proof is similar to those of Propositions 6.1 and 6.2 and is
left to the reader.

ProposiTiON 6.4, Let Q(M, H) be a subbundle of P(M,G),
where H is a Lie subgroup of G. Assume that the Lie algebra g of G admits
a subspace m such that g = m + b (direct sum) and ad (H)(m) = m,
where Y is the Lie algebra of H. For every connection form w in P, the b-
component ' of w restricted to Q is a connection form in Q.

Proof. Let 4 et and A* the fundamental vector field corre-
sponding to 4. Then w'(4*) is the h-component of w(A4*) = A.
Hence, o'(4*) = A. Let ¢ be the m-component of w restricted to
Q. Let Xe T,(Q) and ¢ « H. Then

o(RX) = o' (RX) + ¢(R.X),
ad (¢7)(0(X)) = ad (a™") (' (X)) + ad (¢7)(p(X))-
The left-hand sides of the preceding two equalities coincide.
Comparing the h-components of the right hand sides, we obtain
o' (R,X) = ad (a)(w'(X)). Observe that we used the fact that
ad (aY) (p(X)) is in m. QED.

Remark. The connection defined by w in P is reducible to a
connection in the subbundle @ if and only if the restriction of w
to @ is h-valued. Under the assumption in Proposition 6.4, this
means o’ = w on @,

7. Reduction theorem

Unless otherwise stated, a curve will mean a piecewise differ-
entiable curve of class C*. The holonomy group @, (u,) will be
denoted by ®(u,).

We first establish

TueoreM 7.1 (Reduction theorem). Let P(M, G) be a principal
fibre bundle with a connection ', where M is connected and paracompact.
Let uy be an arbitrary point of P. Denote by P(u,) the set of points in P
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which can be joined to u, by a horizontal curve. Then
(1) P(ug) is a reduced bundle with structure group ®(u,).
(2) The connection T is reducible to a connection in P(u).
Proof. (1) We first prove

Lemma 1. - Let Q be a subset of P(M, G) and H a Lie subgroup of
G. Assume: (1) the projection m: P — M maps Q onto M; (2) Q is
stable by H, i.e., R,(Q) = Q for each a ¢ H; (3) if u,0 € Q and w(u) =
7(v), then there is an element a € H such that v = ua; and (4) every point
x of M has a neighborhood U and a cross section o: U — P such that
o(U) < Q. Then Q(M, H) is a reduced subbundle of P(M, G).

Proof of Lemma 1. For each uenYU), let x = =(u) and
a € G the element determined by # = ¢(x)a. Define an isomorphism
p: 7w Y (U) — U x G by setting p(u) = (x, a). Itis easy to see that
w maps @ N7 Y (U) 1:1 onto U x H. Introduce a differentiable
structure in @ in such a way that y: Q N7 Y(U) - U x H
becomes a diffeomorphism; using Proposition 1.3 of Chapter I
as in the proof of Proposition 5.3 of Chapter I, we see that Q
becomes a differentiable manifold. It is now evident that Q is a
principal fibre bundle over M with group H and that @ is a
subbundle of P.

Going back to the proof of the first assertion of Theorem 7.1, we
see that, M being paracompact, the holonomy group ®(x,) is a Lie
subgroup of G (Theorem 4.2) and that the subset P(x,) and the
group ®(u,) satisfy conditions (1), (2), and (3) of Lemma 1 (cf.
the second definition of ®(u,) given before Proposition 4.1 and
also Proposition 4.1(b)). To verify condition (4) of Lemma I, let
%', ..., %" be a local coordinate system around x such that x is
the origin (0, ..., 0) with respect to this coordinate system. Let
U be a cubical neighborhood of x defined by [x?| < 6. Given any
point y € U, let 7, be the segment from x to y with respect to the
coordinate system %, . . . , x". Fix a point « €  such that 7(u) = x.
Let ¢( y) be the point of P obtained by the parallel displacement
ofu along 7,. Then o: U — Pis a cross section such that ¢(U) < Q.
Now (1) of Theorem 7.1 follows from Lemma 1.

(2) This is an immediate consequence of the following

Lemma 2. Let Q(M, H) be a subbundle of P(M, G) and T a
connection in P. If, for every u ¢ Q, the horizontal subspace of T,(P) is
tangent to Q, then I is reducible to a connection in Q.
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Proof of Lemma 2. We define a connection I" in Q) as follows.
The horizontal subspace of T',(Q), u e Q, with respect to I is by
definition the horizontal subspace of T, (P) with respect to T'. Itis
obvious that T' is reducible to I". QED.

We shall call P(u) the kolonomy bundle through u. It is evident
that P(u) = P(v) if and only if  and v can be joined by a hori-
zontal curve. Since the relation ~ introduced in §4 (u ~ vif u and
v can be joined by a horizontal curve) is an equivalence relation,
we have, for every pair of points u and v of P, either P(u) = P(v)
or P(u) N P(v) = empty. In other words, P is decomposed into
the disjoint union of the holonomy bundles. Since every a € G maps
each horizontal curve into a horizontal curve, R,(P(u)) = P(ua)
and R,: P(u) — P(ua) is an isomorphism with the corresponding
isomorphism ad (a=1): ®(u) — ®(ua) of the structure groups. Itis
easy to see that, given any u and v, there is an element a e G such
that P(v) = P(ua). Thus the holonomy bundles P(«), u € P, are
all isomorphic with each other. ‘

Using Theorem 7.1, we prove that the holonomy groups @, («
I =k =< oo, coincide as was pointed out in Remark of §4
This result is due to Nomizu and Ozeki [2].

THEOREM 7.2. Al the holonomy groups D (w), 1 =k
coincide.

Proof. It is sufficient to show that O, (u) = O, (u). We
denote @, (1) by ®(u) and the holonomy bundle through u by
P(u). We know by Theorem 7.1 that P(u) is a subbundle of P with
@ (u) as its structure group. Define a distribution § on P by setting

S, = T,(P(u)) for u e P.

Since the holonomy bundles have the same dimension, say £, S is
a k-dimensional distribution. We first prove

b

.

fiA

0,

Lemva 1. (1) S is differentiable and involutive.

(2) For each we P, P(u) is the maximal integral manifold of S
through u.

Proof of Lemma 1. (1) We set
S, =8, + Sy, uel,

where S, is horizontal and 7 is vertical. The distribution S’ is
differentiable by the very definition of a connection. To prove the
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differentiability of S, it suffices to show that of §”. For each u ¢ P,
let U be a neighborhood of x = m(u) with a cross section o: U —
P(x) such that o(x) = u. (Such a cross section was constructed in
the proof of Theorem 7.1.) Let 4, ..., 4, be a.basis of the Lie
algebra () of ®(u). We shall define vector fields A, ..., A on
7~}(U) which form a basis of $” at every point of #=*(U). Let
v e m~*(U). Then there is a unique @ e G such that v = o(7(v))a.
Since ad (¢7): ®(u) — ®(v) is an isomorphism, ad (a71)(4,), 1 =
I,...,r, are elements of g(v) and form a basis for g(v). We set
(d), = (ad (@)(4))F,  1=1L...,7
where (ad (¢71)(4,))* is the fundamental vector field on P corre-
sponding to ad (a)(4,) eg(v) = g, t = 1,...,r. It is easy to
see that A,, ..., 4, are differentiable and form a basis of §” on
Y U). .

For each point u, P(u) is an integral manifold of S, since for
every v e P(u), we have T,(P(u)) = T,(P(v)) = S,. This implies
that S is involutive.

(2) Let W(u) be the maximal integral manifold of S through u
(cf. Proposition 1.2 of Chapter I). Then P(x) is an open submani-
fold of W(u). We prove that P(u) = W(u). Let v be an arbitrary
point of W(x) and let u(t), 0 =¢ =1, be a curve in W(u)
such that #(0) =« and u(l) =v. Let ¢, be the supremum
of t, such that 0 = ¢ = £, implies u(¢) ¢ P(u). Since P(u) is open in
W(u), t, is positive. We show that u(¢,) lies in P(u); since P(u) is
open in W(u), this will imply that #, = 1, proving that u(1) = v
lies in P(). The point u(t,) is in P(u(¢,)) and P(u(t;)) is open in
W(u(t,)). There exists & >0 such that ¢, —e <?¢ <1 +¢
implies u(#) € P(u(ty)). Let t be any value such that#;, — e <¢ < ¢,.
By definition of ¢;, we have u(f) € P(). On the other hand,
u(t) € P(u(t,)). This implies that P(u) = P(u(t,)) so thatu(t,) € P(u)
as we wanted to show. We have thereby proved that P(u) is
actually the maximal integral manifold of " through .

Lemma 2. Let S be an involutive, C*-distribution on a C*-manifold.
Supposex;, 0 < t = 1, is a piecewise G -curve whose tangent vectors %,
belong to S. Then the entire curve x, lies in the maximal integral manifold
W of S through the point x,.

Proof of Lemma 2. 'We may assume that x, is a (*-curve. Take

a local coordinate system x', . . . , #* around the point x, such that
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o/oxt, ..., 0/0x*, k =dim S, form a local basis for § (cf.
Chevalley [1, p. 92]). For small values of ¢, say, 0 < ¢t < ¢, %,
can be expressed by x* = x%(¢), | = ¢ = n, and its tangent vectors
are given by 2; (dx’/dt)(9]0x%). By assumption, we have dx?[dt = 0
for k + 1 £ ¢ £ n Thus, 27(¢) = 2*(0) for £ + 1 £ 7 < n so that
%, 0 =1t =e lies in the slice through x, and hence in W.
The standard continuation argument concludes the proof of
Lemma 2.

We are now in position to complete the proof of Theorem 7.2.
Let a be any element of ®,(«). This means that v and ua can be
joined by a piecewise C-horizontal curve u, 0 =t < 1, in P.
The tangent vector #, at each point obviously lies in S, . By
Temma 2, the entire curve u, lies in the maximal integral manifold
W (u) of § through . By Lemma 1, the entire curve u, lies in P(u).
In particular, ua is a point of P(«). Since P(u) is a subbundle with
structure group @(u), a belongs to O (u). QED.

CorovrrarY 7.3, The restricted holonomy groups ®y(u), 1 < k <
o0, cotneide.

Proof. ®9(u) is the connected component of the identity of
@, (u) for every £ (cf. Theorem 4.2 and its proof). Now, Corollary
7.3 follows from Theorem 7.2. QED,

Remark. 1In the case where P(M, G) is a real analytic principal
bundle with an analytic connection, we can still define the ho-
lonomy group ®,(x) by using only piecewise analytic horizontal
curves. The argument used in proving Theorem 7.2 and Corollary
7.3 shows that @, (u) = ®,(x) and ®%(u) = DI(u).

Given a connection I' in a principal fibre bundle P(M, G),
we shall define the notion of parallel displacement in the associated
fibre bundle E(M, F, G, P) with standard fibre F. For each
w e E, the horizontal subspace @Q, and the vertical subspace F, of
T,(E) are. defined as follows. The vertical subspace F, is by
definition the tangent space to the fibre of E at w. To define @,
we recall that we have the natural projection P X F — F =
P x g F. Choose a point (4, §) ¢ P X F which is mapped into w. We
fix this & € F and consider the mapping P — E which maps v e P
into v£ € E. Then the horizontal subspace @, 1s, by definition, the
image of the horizontal subspace @, < 77,(P) by this mapping
P — E. We see easily that @, is independent of the choice of
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(u, &) e P x F. We leave to the reader the proof that T,(E) =
F, + Q, (direct sum). A curve in E is horizontal if its tangent
vector is horizontal at each point. Given a curve = in M, a (hori-
zontal) lift 7* of = is a horizontal curve in £ such that 7 ,(7*) = 7.
Given a curve 7 =x, 0 < ¢ < I, and a point w, such that
7g(Wy) = %, there is a unique lift * = w, starting from w,. To
prove the existence of 7%, we choose a point (u,, &) in P x Fsuch
that u,é = w,. Let u, be the lift of + = x, starting from u,. Then
w, = u,& is a lift of 7 starting from w,. The uniqueness of =*
reduces to the uniqueness of a solution of a system of ordinary
linear differential equations satisfying a given initial condition
just as in the case of a lift in a principal fibre bundle. A cross
section o of E defined on an open subset U of M is called
parallel if the image of T',(M) by o is horizontal for each x € U, that
is, for any curve = = x,, 0 = ¢ = 1, the parallel displacement of
o(x,) along = gives o(x;).

ProrosirioN 7.4, Let P(M, G) be a principal fibre bundle and
E(M, GIH, G, P) the associated bundle with standard fibre G|H, where
H s aclosed subgroup of G. Let o2 M — E be a cross section and Q( M, H)
the reduced subbundle of P(M, G) corresponding to o (¢f. Proposition
5.6 of Chapter I). Then a connection 1" in Pis reducible to a connection T
in Q if and only if o us parallel with respect to T.

~ Proof. If we identify £ with P/H (cf. Proposition 5.5 of
Chapter I), then ¢(M) coincides with the image of @ by the
natural projection u: P — E = P[H; in other words, if u ¢ ¢ and
x = m(u), then o(x) = u(u) (cf. Proposition 5.6 of Chapter I).
Suppose I' is reducible to a connection I'V in . We note that if
& is the origin (i.e., the coset H) of G/H, then ué = u(u) for every
u e Pand henceifu,, 0 < ¢ < 1, is horizontal in P, so is u(u,) in E.
Given a curve x,, 0 = ¢ = 1, in M, choose uy € @ with 7(uy) = x,
so that o(x) = u(u,). Let u, be the lift to P of x, starting from u,
(with respect to I'), so that u(u,) is the lift of x, to E starting from
o(xe). Since I' is reducible to I, we have u,¢ @ and hence
p(u,) = o(x,) for all £. Conversely, assume that ¢ is parallel (with
respect to I'). Given any curve ¥, 0 = ¢ < 1, in M and any point
uy of @ with =(u;) = %, let u, be the lift of #, to P starting from
u,. Since o is parallel, u(u,) = o(x,) and hence u, ¢ Q for all £. This
shows that every horizontal vector at 4, € @ (with respect to T) is
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tangent to ¢. By Proposition 7.2, I' is reducible to a connection
in Q. A QED.
8. Holonomy theorem

We first prove the following result of Ambrose and Singer [1] by
applying Theorem 7.1.

Turorem 8.1, Let P(M, G) be a principal fibre bundle, where M
is connected and paracompact. Let T' be a connection in P, Q the curvature
Jorm, ®(u) the holonomy group with reference point u e P and P(u) the
holonomy bundle through u of T'. Then the Lie algebra of ®(u) is equal to
the subspace of g, Lie algebra of G, spanned by all elements of the form
Q(X, Y), where v e P(u) and X and Y are arbitrary horizontal vectors at
0.

Proof. By virtue of Theorem 7.1, we may assume that P(u) =
P, ie., ®(u) = G. Let o’ be the subspace of g spanned by all
elements of the form Q,(X, Y), where v e P(u) = P and X and ¥
are arbitrary horizontal vectors at ». The subspace g’ is actually
an ideal of g, because Q is a tensorial form of type ad G (cf. §5)
and hence g’ is invariant by ad G. We shall prove that g’ = g.

At each point v e P, let §, be the subspace of T,(P) spanned by
the horizontal subspace @, and by the subspace g, = {4%; A ¢ a't
where 4% is the fundamental vector field on P corresponding to 4.
The distribution .S has dimension 7 + 7, where n = dim M and
r = dim g'. We shall prove that § is differentiable and involutive.
Let v be an arbitrary point of P and U a coordinate neighborhood
of y = w(v) e M such that #=*(U) is isomorphic with I/ x G. Let
Xy, ..., X, be differentiable vector fields on U/ which are
linearly independent everywhere on U and X¥ ..., X* the
horizontal lifts of X, ..., X,,. Let 4,, . . ., 4, be a basis for g’ and
A, ..., AF the corresponding fundamental vector fields. It is
clear that X¥, ..., X¥ A¥ ..., A* form a local basis for S.
To prove that §' is involutive, it suffices to verify that the bracket
of any two of these vector fields belongs to §. This is clear for
[4F, AF], since [4;,4,] € ¢’ and [4,, 4,]*% = [4f, 4F]. By the
lemma for Theorem 5.2, [A4F, X¥] is horizontal; actually,
[4¥, X¥] = 0 as X# is invariant by R, for each a ¢ G. Finally, set
A = o([X}, X¥]) e g, where » is the connection form of I'. By
Corollary 5.3, 4 = w([X}, X¥]) = —20(X}, X¥) e g'. Since the
vertical component of [XF, X}] at ve P is equal to A¥eS,,
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[X}, X¥] belongs to S. This proves our- assertion that § isin-
volutive.

Let P, be the maximal integral manifold of § through u. By
Lemma 2 in the proof of Theorem 7.2, we have Py = P. There-

fore,  Qimg—dimP —7n —dimP, —n — dim g'.

This implies g = g'. : QED.
Next we prove

TuroreM 8.2.  Let P(M, G) be a principal fibre bundle, where P
is connected and M is paracompact. If dim M = 2, there exists a con-
nection in P such that all the holonomy bundles P(u), u € P, coincide with P.

Proof. Let 4, be an arbitrary point of P and %, . . ., x™ a local
coordinate system with origin x, = n{(u,). Let U and V be neigh-
borhoods of x, defined by [x*] < « and [x| < § respectively,
where 0 < § < «. Taking « sufficiently small, we may assume
that P | U = =»=1(U) is isomorphic with the trivial bundle U x G.
We shall construct a connection I in Pl U such that the ho-
lonomy group of the bundle P |V coincides with the identity
component of G. We shall then extend IV to a connection I' in P
in such a way that I coincides with [ on P | V (cf. Theorem 2.1).

Let 4., ..., 4, be a basis for the Lie algebra g of . Choose real
numbers ¢y, . .., o, such that 0 < oy < ay < --+ < a, < f and
let f;(t),7 =1, ..., r, be differentiable functionsin —a — & < ¢ <
o + esuch that £,(0) = Oforeveryiand f;(a,) = d,; (Kronecker’s
symbol). On #=Y(U) = U x G, we can define a connection form
o by requiring that

0aaf0108) = 3 £,02)4,
fom
and that ,
W0(0]0x%) = 0 for: =2,3,...,n

(Note that, by virtue of the property Rfw = ad (a~')(w), the
preceding conditions determine the values of w at every point
(x,a) of U x G.)

Fixing ¢, 0 <t < f, and oy 1 <k =7, for the moment,
consider the rectangle on the x%x*plane in V formed by the line
segments 7, from (0, 0) to (0, «,), 7, from (0, o) to (£, o), 75 from
(¢, o) to (4, 0) and 7, from (4, 0) to (0, 0). (Here and in the
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following argument, the 43 to #"-coordinates of all the points remain
0 and are hence omitted.) In #=(V) = V x G, we determine the
horizontal lift of = = 74+ 75 7, - 7, starting from the point
(0, 03 ¢). The lift 7§ of 7, starting from (0, 0; ¢) is clearly (0, s; ¢),
0 = s = a since its tangent vectors @/0dx? are horizontal. The
lift 7¥ of =, starting from the end point (0, «,; ¢) of 7¥ is of the
form (s, ay; ¢,), 0 = s = ¢, where ¢, is a suitable curve with ¢, =
e in G. Its tangent vector is of the form (0/9x').,., + ¢, By a
similar computation to that for Proposition 3.1, we have

O((0]05) oy + &) = ad (67 0((9]01)) g0 + 7+ 4
= ad (¢;") ( ﬁ: fi(ak)A9'> +oeteig =ad (¢4, + o7t i
j=1

Therefore we have ¢, « ¢, = —A4,, that is, ¢, = exp (—s4,). The
end point of 7% is hence (¢, oy; exp (—t4,)). The lift 7% of =4
starting from (¢, aey; exp (—#4,)) is (4, o — 55 exp (—d4,)), 0 =
§ = ay. Finally, the lift 7§ of 7, starting from the end point (¢, 0;
exp (—tA4,)) of =¥ is (t — s, 0;exp (—14,)), 0 =5 =< ¢, since
0/0x" is horizontal at the points with x? = 0. This shows that the
end point of the lift 7* of = is (0, 0; exp (—4,)), proving that
exp (—td,) is an element of the holonomy group of #—1(V) with
reference point (0, 0; ¢). Since this is the case for every ¢, we see
that 4, is in the Lie algebra of the holonomy group. The result
being valid for any A4,, we see that the holonomy group of the
connection in =V} coincides with the identity component of G.

Let " be a connection in P which coincides with I’ on #=}(7).
Since the holonomy group ®(u,) of I' obviously contains the
identity component of G, the holonomy bundle P(y,) of I" has the
same dimension as P and hence is open in P. Since P is a disjoint
union of holonomy bundles each of which is open, the connected-
ness of P implies that P = P(u,). QED.

Cororrary 8.3, Any connected Lie group G can be realized as the
holonomy group of a certain connection in a trivial bundle P = M X G,
where M is an arbitrary differentiable manifold with dim M = 2.

Theorem 8.2 was proved for linear connections by Hano and
Ozcki [1] and then in the general case by Nomizu [5], both by
making use of Theorem 8.1. The above proof which is more
direct is due to E. Ruh (unpublished).
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9. Flat connections

Let P = M x G be a trivial principal fibre bundle. For each
aeG, the set M x {a} is a submanifold of P. In particular,
M x {e} is a subbundle of P, where ¢ is the identity of G. The
canonical flat connection in P is defined by taking the tangent space
to M x {a} at u = (v, a) e M X G as the horizontal subspace at
«. In other words, a connection in Pis the canonical flat connection
if and only if it is reducible to a unique connection in M x {e}.
Let 6 be the canonical 1-form on G (cf. §4 of Chapter I). Let
J: M x G — G be the natural projection and set

w = f*0,

It is easy to verify that w is the connection form of the canonical
flat connection in P. The Maurer-Cartan equation of 6 implies
that the canonical flat connection has zero curvature:

do = d(f*0) = f(d0) = f*(~ 316, )
v = —3[/*0,/*0]= —}[o, o].

A connection in any principal fibre bundle P(M, G) is called
flat if every point x of M has a neighborhood U such that the
induced connection in P|U = =»~}(U) is isomorphic with the
canonical flat connection in U x G. More precisely, there is an
isomorphism ¢: #~1(U) — U x G which maps the horizontal
subspace at each u € #72(U) upon the horizontal subspace at y(«)
of the canonical flat connection in U x G.

Tueorem 9.1. A connection in P(M, G) is flat if and only if the
curvature form vanishes identically.

Proof.” The necessity is obvious. Assume that the curvature
form vanishes identically. For each point x of M, let U be a
simply connected open neighborhood of x and consider the induced
connection in P | U = »~Y(U). By Theorems 4.2 and 8.1, the
holonomy group of the induced connection in P | U consists of
the identity only. Applying the Reduttion Theorem (Theorem
7.1), we see that the induced connection in P | U is isomorphic
with the canonical flat connection in U x G. QED.

Cororrary 9.2. Let I' be a connection in P(M, G) such that the
curvature vamishes identically. If M is paracompact and simply connected,
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then P is isomorphic with the trivial bundle M x G and T is isomorphic
with the canonical flat connection in M x G.

We shall study the case where M is not necessarily simply
connected. Let I' be a flat connection in P(M, G), where M is
connected and paracompact. Let uye P and M* = P(), the
holonomy bundle through uy; A£* is a principal fibre bundle over
M whose structure group is the holonomy group ®(u,). Since
®(u,) is discrete by Theorems 4.2 and 8.1 and since M* is con-
nected, M* is a covering space of M. Set x, = 7(u,), %,¢ M.
Every closed curve of M starting from x, defines, by means of the
parallel displacement along it, an element of ®(,). Since the
restricted holonomy group is trivial by Theorems 4.2 and 8.1, any
two closed curves at x, representing the same element of the first
homotopy group (M, x,) give rise to the same element of ®(x,).
Thus we obtain a homomorphism of 7, (M, x,) onto ®(u,). Let N
be a normal subgroup of ®(u,) and set M’ = M*|N. Then M’ is
a principal fibre bundle over A with structure group ®(u,)/N.
In particular, M’ is a covering space of M. Let P'(M’, G) be the
principal fibre bundle induced from P(M, G) by the covering
projection M’ — M. Let f: P’ — P be the natural homomorphism
(cf. Proposition 5.8 of Chapter I).

Prorosrrion 9.3, There exists a unique connection 1V in P'(M’, G)
which is mapped into T' by the homomorphism f: P’ — P. The connection
UV"is flat. If ugis a point of P suck that f (ug) = u,, then the holonomy
group ®(ug) of T with reference point ug is isomorphically mapped onto
Nbyf

Proof. The first statement is contained in Proposition 6.2. By
the same proposition, the curvature form of I'’ vanishes identically
and I" is flat. We recall that P’ is the subset of M’ x P defined as
follows (cf. Proposition 5.8 of Chapter I):

P = {(x',u) e M' X P; u(x') = n(u)},

where u: M' — M is the covering projection. The projection
w't P’ — M’ is given by ='(x’, u) = x’ and the homomorphism
St P'— P is given by f(x',u) = u so that the corresponding
homomorphism f: G — G of the structure groups is the identity
automorphism. To prove that f maps ®(u) isomorphically onto |
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N, it is therefore sufficient to prove ®(u)) = N. Write
uy = (xg, uy) e P = M" x P.
Since p(xg) = w(u,), there exists an element a e ®(y,) such that
%o = v(ua),

where v: M* = P(uy) — M’ = P(u,)/N is the covering projection.
Let 7 =u;, 0 = ¢ =< 1, be a horizontal curve in P’ such that
7' (ug) = m'(uy). For each ¢, we set

u, = (x;, u,) e P’ = M x P.

contained in M* = P(u,). Since wu(x;) = m(u;) = pov(u;) and
xy = v(uga), we have x/ = »(u,a) for 0 = ¢t = 1. We have

W(us0) = 3, = () = ' (ug) = 5 = v(ug0)

and, conscquently,
v(“l) = V(“o)a

which means that u; = uyb for some be N. This shows that

®(u;) = N. Conversely, let b be any element of N. Letu,, 0 < ¢ <

1, be a horizontal curve in Psuch thatu, = u,b. Define a horizontal
curve u;, 0 =< ¢ = 1, in P' by

w, = (g, ),

where x, = »(u,a). Then o) = uib, showing that b e (). QED.

10. Local and infinitesimal holonomy groups

Let T be a connection in a principal fibre bundle P(M, G),

where M is connected and paracompact. For every connected
open subset U of M, let T'y; be the connection in P | U = #»~(U)
induced from I'. For each u e #~Y(U), we denote by ®°(u, U) and
P(u, U) the restricted holonomy group with reference point » and
the holonomy bundle through u of the connection I'y, respectively.
P(u, U) consists of points v of 7=}(U) which can be joined to u by
a horizontal curve in »~(U).

The local holonomy group ®*(u) with reference point u of I' is
defined to be the intersection (®°(x, U), where U runs through
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all connected open neighborhoods of the point ¥ = 7 (u). If {U,}
is a sequence of connected open neighborhoods of x such that

U, > U, and ﬁ U, = {«}, then we have obviously ®°(u, U;) =
k=1

OO(u, U,) = o OOy, U,) = +++. Since, for every open
neighborhood U of x, there exists an integer £ such that U, < U,

we have ®*(u) = ) ®°(u, U,). Since each group ®°(u, U,) is a
k=1 :

connected Lie subgroup of G (Theorem 4.2), it follows that
dim ®°(, U,) is constant for sufficiently large £ and hence that
O*(u) = Ou, U,) for such k. The following proposition is now
obvious.

ProposirioN 10.1.  The local holonomy groups have the following
properties: ,

(1) ®*(u) is a connected Lie subgroup of G which is contained in the
restricted holonomy group ®%(u) ;

(2) Every point x = m(u) has a connected open neighborhood U such that
O*(u) = O%u, V) for any connected open neighborhood V of x contained
m U

(3) If U is such a neighborhood of x = m(u), then ®*(u) 2 ©*(v)
Jor every v e P(u, U) ;

(4) For every a ¢ G, we have ®*(ua) = ad (a™')(®*(u)) ;

(5) For every integer m, the set {m(u) e M;dim ®*(u) = m} is
open.

As to (5), we remark that dim ®*(u) is constant on each fibre of
P by (4) and thus can be considered as an integer valued function
on M. Then (5) means that this integer valued function is upper
semicontinuous.

TueoreM 10.2.  Let g(u) and g*(u) be the Lie algebras of ®°(u)
and ®* (u) respectively. Then ®°(u) is generated by all ®*(v), v e P(u),
and q(u) is spanned by all g*(v), v e P(u).

Proof. If ve P(u), then ®°(u) = ®%v) > O*(v) and g(u) =
a(v) = g*(v). By Theorem 8.1, g(u) is spanned by all elements of
the form Q,(X*, Y*) where v ¢ P(u) and X* and Y* are horizontal

_vectors at ». Since Q,(X*, Y*) is contained in the Lie algebra of

®(y, V) for every connected open neighborhood V of #(v), it is
contained in g*(v). Consequently, g(x) is spanned by all g*(v)



