Erratum for: A Morse Theory for Equivariant Yang-Mills

(1) page 347: In equation (4.2) the second term in the numerator should read $e^{-i(l+1) \theta}$. The next line should begin "Now fix an odd integer $l>1$..."
(2) page 346: The reference to (4.1) on line 10 should be to (2.4).
(3) page 345: The proof of formula (3.3) is correct only if the center of the group G is trivial. There is also some confusion between lifts and equivalence classes of lifts. The argument for a general compact group G is given below. I thank Paul Kirk for this correction.

We first show that \mathcal{B}^{H} is a union $\mathcal{A}_{i} / \mathcal{G}_{i}$ of connections invariant under extensions of the H action to P. Let $C(G)$ denote the center of G, which is also the center of \mathcal{G}. Let $K=I / \sim$ parameterize the actions of extensions of H by $C(G)$ on P up to equivalence. Thus the elements of I are groups H_{i} which fit into exact sequences:

$$
1 \rightarrow C(G) \rightarrow H_{i} \rightarrow H \rightarrow 1
$$

together with a lift of the H action on M to an H_{i} action on P. We consider H_{i} equivalent to H_{j} if there is an isomorphism $\alpha: H_{i} \rightarrow H_{j}$ and a gauge transformation $\gamma \in \mathcal{G}$ commuting the two actions, so $\gamma h \gamma^{-1}=\alpha(h)$.

Given $i \in I$, let $\mathcal{A}_{i}=\left\{A \in \mathcal{A} \mid h \cdot A=A \forall h \in H_{i}\right\}$ and $\mathcal{G}_{i}=\left\{g \in \mathcal{G} \mid g h g^{-1} h^{-1} \in\right.$ $\left.C(G) \forall h \in H_{i}\right\}$. Then \mathcal{G}_{i} acts on \mathcal{A}_{i} since if $A \in \mathcal{A}_{i}, g \in \mathcal{G}_{i}$, and $h \in H_{i}$, then there is a $c \in C(G)$ so that $h g A=g h c A$, but $c A=A$ since $C(G)$ lies in the stabilizer of A.

Set $\mathcal{B}_{i}=\mathcal{A}_{i} / \mathcal{G}_{i}$. It is easy to check that $\mathcal{B}_{i}=\mathcal{B}_{j}$ when i and j are equivalent lifts.
Let \mathcal{A}_{i}^{*} denote $\mathcal{A}_{i} \cap \mathcal{A}^{*}$, the irreducible invariant connections, and $\mathcal{B}_{i}^{*}=\mathcal{A}_{i}^{*} / \mathcal{G}_{i}$. Let $\mathcal{B}^{H *}=\mathcal{B}^{H} \cap \mathcal{B}^{*}$.

Lemma. The natural map $\mathcal{B}_{i}^{*} \rightarrow \mathcal{B}^{H *}$ is an embedding and $\mathcal{B}^{H *}$ is a disjoint union

$$
\mathcal{B}^{H *}=\bigcup_{i \in K} \mathcal{B}_{i}^{*}
$$

where the notation $i \in K$ means that we choose one i from each coset of K.
Proof. If $[A] \in \mathcal{B}^{H *}$, pick a lift $A \in \mathcal{A}$. Let $\mathcal{H}_{A}=\{h \in \operatorname{Aut}(P) \mid \pi(h) \in H, h A=A\}$, where $\pi: \operatorname{Aut}(P) \rightarrow \operatorname{Diff}(M)$. Since the stabilizer of A in \mathcal{G} is just $C(G)$ the sequence

$$
1 \rightarrow C(G) \rightarrow \mathcal{H}_{A} \rightarrow H \rightarrow 1
$$

is exact (the third map is onto because $[A] \in \mathcal{B}^{H}$.) Now \mathcal{H}_{A} is a subgroup of $\operatorname{Aut}(P)$ and so it acts on P, extending the H action on M. Thus $H_{A} \in I$ and a different choice of representative for $[A]$ yields an equivlaent extension. Thus $\cup_{i} \mathcal{B}_{i}^{*}$ maps onto $\mathcal{B}^{H *}$. The restriction to \mathcal{B}_{i}^{*} is $1-1$ since if $g \in \mathcal{G}, A, B \in \mathcal{A}_{i}^{*}$ so that $g A=B$, then for each $h \in \mathcal{H}_{i}$, $h g A=h B=B=g A=g h A$ so that $[g, h]$ stabilizes A and hence $g \in \mathcal{G}_{i}$. Finally, if $A \in \mathcal{A}_{i}^{*}$ and $B \in A_{j}^{*}$ are gauge equivalent, then it is easy to see that i and j are equivalent lifts.

Remark: Given an extension H_{i} of the H action on M to P, we can extend the H action on \mathcal{B} to and H_{i} action since if $g A=B$ and $h \in H_{i}$, then $h g^{-1} h^{-1} \in \mathcal{G}$ and $\left(h g^{-1} h^{-1}\right) h B=h A$, so $[h A]=[h B]$. Therefore the irreducible connections (mod gauge equivalence) left invariant by H are the union of invariant connections under various $C(G)$ extensions of the H action to P.

