Homework 1 Comments

Scoring: Total 26 points

Problem	Points
1	3
$2 \mathrm{a}, \mathrm{b}$	$6(3$ each $)$
3	3
$4 \mathrm{a}, \mathrm{b}, \mathrm{c}$	3 (1 each $)$
5	2
6a,c,d,e, 7a,b, 8a,b,c	9 (1 for each part)

- Common mistakes

1. To get the estimate $\left|d\left(x_{n}, x_{0}\right)-d\left(x, x_{0}\right)\right| \leq d\left(x_{n}, x\right)$, one must apply the triangle inequality twice: In a metric space, if $a=d(x, y), b=d(y, z)$ and $c=d(x, z)$, the triangle inequality gives $a \leq b+c$, and also $b \leq a+c$; together these give us $|a-b| \leq c$.
2. X is not open does not mean that X is closed. A simple example is the half-open interval $[0,1)$ in \mathbb{R}.
3. One cannot prove that $B(x, D / 2) \cap B(y, D / 2)=\varnothing$ simply by drawing a picture. These are balls in an arbitrary metric space, however bizarre. A correct proof uses only the triangle inequality.
4. For part (e), $\beta(x)=1-h(|x|)$ is smooth, but not because of it is a composition of smooth functions $\left(|x|\right.$ is not smooth). The key point is that $h(|x|)$ is a function of $|x|^{2}$, which is smooth.
5. For (b), it is not enough to draw a picture. Some also gave the following proof:

- S^{1} is open but $g^{-1}\left(S^{1}\right)=[0,2 \pi)$ is not open, so g^{-1} is not continuous.

This is wrong for two reasons. First, the logic is wrong: one should take an open set in $[0,2 \pi)$, and check its preimage under $g^{-1}: S^{1} \rightarrow[0,2 \pi)$. Second, the topology on the interval $I=[0,2 \pi)$ is the induced topology coming from the embedding $I \subset \mathbb{R}$ (in which the open sets in I are those of the form $U \cap I$ for U open in $\mathbb{R})$. In this topology, $[0,2 \pi)$ is in fact open.

Here are two correct proofs of (7b):
(a) Using sequences: Set $x_{n}=2 \pi-\frac{1}{n}$ and $y_{n}=g\left(x_{n}\right)$. Check that $\left\{y_{n}\right\}$ converges (to the point $1 \in S^{1}$), but $\left\{x_{n}\right\}$ does not. Thus g^{-1} is not continuous.
(b) Note that $[0, \pi)$ is open in $[0,2 \pi)$ (why?). Its preimage $\left(g^{-1}\right)^{-1}([0, \pi))=[0,2 \pi)$ is the open upper half circle together with the point $1 \in \mathbb{C}$ and is not open (why?). Thus g^{-1} is not continuous.

Homework 2 Comments

Scoring: Total 32 points

Problem	Points
1	4
2	2
3	$4(2$ each $)$
4	3
5	$6(3$ each $)$
6	3
7	2
8	$2(1$ each $)$
9	3
10	3

Common mistakes (by Problem number):

2. To write a vector or vector field X in matrix notation, write $X=\sum_{i} a^{i}(x) \frac{\partial}{\partial x^{i}}$ and form a vertical vector from the coefficients:

$$
X=\left[\begin{array}{c}
a^{1}(x) \\
a^{2}(x) \\
\vdots \\
\cdot
\end{array}\right] \quad \text { Do not form a "vector" }\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right] \text { whose entries are basis vectors. }
$$

3. Many of you used spherical coordinates to parameterize the surface. This is ok, but not necessary. One can simply start form the definition: For $v \in T_{p} S^{2}$, then locally there exists a curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow S^{2} \quad \text { with } \gamma(0)=p, \text { and }\left.\quad \frac{d(\phi \circ \gamma)}{d t}\right|_{t=0}=v
$$

Then, writing $\phi \circ \gamma=(a(t), b(t), c(t))$, we have $a^{2}(t)+b^{2}(t)+c^{2}(t)=1$. Differentiating both sides, one gets $p \cdot v=0$, this is the condition for a tangent vector in $T_{p} S^{2}$.
Notice that this method works for the unit sphere S^{n} of any dimension. I also encourage you to think about general hypersurfaces in \mathbb{R}^{n}.
4. Again, do not prove by drawing pictures, and start the proof from definitions is always a good idea.
In particular for problem 4, it is incorrect to assume that there is a t such that $\gamma([0, t]) \in$ $X_{1}, \gamma([t, 1]) \in X_{2}$ (for example, the path could go through X_{1} and X_{2} several times).
5.a) As in the hint, one has to use the fundamental theorem of calculus for a proof. The first step is to choose local coordinates; expressions like $\frac{\partial f}{\partial x^{i}}$ do not make sense only after local coordinates have been chosen.

After choosing local coordinates $\left\{x^{i}\right\}$ on a neighborhood of p in M and $\left\{y^{j}\right\}$ on a neighborhood of $f(p)$ in N, one can write f as $\left(f^{1}\left(x^{1}, \ldots x^{m}\right), f^{1}\left(x^{1}, \ldots x^{m}\right), \cdots\right)$ and use the fundamental theorem of calculus along the path $\gamma(t)=(1-t) p+t q, 0 \leq t \leq 1$ from p to q. This has the form

$$
\begin{equation*}
f^{j}(p)=f^{j}(q)+\int_{0}^{1} \sum_{i} \frac{\partial f^{j}}{\partial x^{i}} \frac{d \gamma^{i}}{d t} d t \tag{1}
\end{equation*}
$$

This is equivalent to replacing f locally by the map $\tilde{f}=\psi f \varphi^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

