Math 868 - Some Homework 9 Solutions

1. (a) Choosing bases for V and W gives isomorphisms $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, and then $L(V, W)$ is identified with the vector space of all $n \times m$ matrices, which has dimension $m n$.
(b) Define a map $F: V^{*} \times W \rightarrow L(V, W)$ by letting $L=F(\alpha, w)$ be the linear map

$$
L(v)=\alpha(v) w \quad \text { for all } v \in V, \omega \in W, \alpha \in V^{*}
$$

Then L is linear. Also, F is bilinear, so extends to a map $\bar{F}: V^{*} \otimes W \rightarrow L(V, W)$. This map \bar{F} is injective because if L is the 0 linear transformation, then $\alpha(v)=0$ for all $v \in V$, which means that $\alpha=0$. But $V^{*} \otimes W$ and $L(V, W)$ both have dimension $m n$ by part (a), so \bar{F} is an isomorphism.
2. For each $p \in M$ and each non-zero $X \in T_{p} M$ we have

$$
\tilde{g}\left(f_{*} X, f_{*} X\right)=\left(f^{*} \tilde{g}\right)(X, X)=g(X, X) \geq 0
$$

because g is positive definite. This means that $f_{*} X \neq 0$ because \tilde{g} is positive definite. Thus f_{*} is injective for each $p \in M$, which means that f is an immersion.
3. Choose coordinates with $p=(0, \ldots, 0)$ and $q=(d, 0, \ldots 0)$ where $d=\operatorname{dist}(p, q)$. Then $\gamma_{0}(t)=$ $(t d, 0, \ldots, 0)$. For any path $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ with $\gamma(0)=p$ and $\gamma(1)=q$, write $\gamma(t)=\gamma_{0}(t)+x(t)$ with $x(0)=x(1)=0$. Then

$$
|\dot{\gamma}(t)|=\left|\dot{\gamma}_{0}(t)+\dot{x}(t)\right| \geq\left|\left(\dot{\gamma}_{0}(t)+\dot{x}(t)\right)^{1}\right| \geq\left|\dot{\gamma}_{0}(t)\right|+\dot{x}^{1}(t)
$$

since $\gamma_{0}^{i}(t)=0$ for all t and all $i \neq 1$ and $\gamma_{0}^{1}(t) \geq 0$. Therefore

$$
\begin{aligned}
L_{g_{0}}(\gamma)=\int_{0}^{1}|\dot{\gamma}(t)| d t & \geq \int_{0}^{1}\left|\dot{\gamma}_{0}(t)\right|+\dot{x}^{1}(t) d t \\
& =L_{g_{0}}\left(\gamma_{0}\right)+\left.\left(x^{1}(t)\right)\right|_{0} ^{1} \\
& =L_{g_{0}}\left(\gamma_{0}\right)+0
\end{aligned}
$$

4. Given an orientation-preserving map $\phi\left(y^{1}, \ldots y^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)$ we can write

$$
\frac{\partial}{\partial y^{i}}=\sum_{j} \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}} \quad \text { and } \quad d y^{i}=\sum_{j} \frac{\partial y^{i}}{\partial x^{i}} d x^{j}
$$

Let A be the matrix $\frac{\partial x^{j}}{\partial y^{i}}$, so A^{-1} is $\frac{\partial y^{j}}{\partial x^{i}}$. Then by the formula relating determinants and n-forms

$$
d y^{1} \wedge \cdots \wedge d y^{n}=A\left(d x^{1}\right) \wedge \cdots \wedge A\left(d y^{n}\right)=\left(\operatorname{det} A^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Also, the matrix for the metric in terms of the y coordinates is

$$
\tilde{g}_{i j}=g\left(\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{i}}\right)=g\left(\sum A_{i}^{k} \frac{\partial}{\partial x^{i}}, \sum A_{j}^{\ell} \frac{\partial}{\partial x^{\ell}}\right)=\sum A_{i}^{k} A_{j}^{\ell} g_{k \ell}
$$

Hence $\operatorname{det} \tilde{g}=(\operatorname{det} A)^{2} \operatorname{det} g$ with $\operatorname{det} A>0$ because ϕ preserves orientation.
Altogether,

$$
\begin{aligned}
\sqrt{\operatorname{det} \tilde{g}} d y^{1} \wedge \cdots \wedge d y^{n} & =(\operatorname{det} A \sqrt{\operatorname{det} g})\left(\operatorname{det} A^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\sqrt{\operatorname{det} g} d x^{1} \wedge \cdots \wedge d x^{n}
\end{aligned}
$$

Thus the formula for the volume form is the same in any positively-oriented coordinate chart.

