Math 868 - Homework 9

Due Friday Dec. 7.

1. (a) If V and W are vector spaces of finite positive dimensions n and m, prove that the set $L(V, W)$ of all linear maps $\lambda: V \rightarrow W$ is a vector space of dimension $m n$.
(b) Prove that $V^{*} \otimes W \cong L(V, W)$.
2. Let (M, g) and (\tilde{M}, \tilde{g}) be Riemannian manifolds. Suppose $f: M \rightarrow \tilde{M}$ is a smooth map such that $f^{*} \tilde{g}=g$. Prove that f is an immersion.
3. Do Lee's Problem 13-10: Show that the shortest distance between two points in Euclidean space is a straight segment. More precisely, for $p, q \in \mathbb{R}^{n}$, let $\gamma_{0}:[0,1] \rightarrow \mathbb{R}^{n}$ be the path

$$
\gamma_{0}(t)=(1-t) p+t q
$$

and let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be another path with $\gamma(0)=p$ and $\gamma(1)=q$. Prove that

$$
L_{g_{0}}\left(\gamma_{0}\right) \leq L_{g_{0}}(\gamma)
$$

where g_{0} is the standard metric on \mathbb{R}^{n}, given by the dot product. Hint: choose coordinates with origin at p and with $q=(d, 0, \ldots, 0)$, write $\gamma(t)=\gamma_{0}(t)+x(t)$ and note that $\left|\dot{\gamma}_{0}+\dot{x}\right| \geq \dot{\gamma}_{0}+\dot{x}^{1}$.
4. Let (M, g) be an oriented Riemannian manifold. As in class, the metric determines a volume form that is given in each positively-oriented coordinate chart by

$$
d v o l_{g}=\sqrt{\operatorname{det} g_{i j}} d x^{1} \wedge \cdots \wedge d x^{n}
$$

Show directly that this does not depend on the choice of the positively-oriented chart, that is, if $\phi\left(y^{1}, \ldots y^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)$ is a diffeomorphism between charts with $\operatorname{det} D \phi>0$, then $\phi^{*} d v o l_{g}$ has the same expression in y-coordinates.
Hint: Write $\frac{\partial}{\partial y^{i}}=\sum_{j} \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}}$ and $d y^{i}=\sum_{j} \frac{\partial y^{i}}{\partial x^{i}} d x^{j}$, and let $A_{j}^{i}=\frac{\partial x^{j}}{\partial y^{i}}$ be the matrix of $D \phi$ in these coordinates. Use the properties of determinants and the formula related determinants to wedge products.
5. On a Riemannian manifold (M, g), each function $f \in C^{\infty}(M)$ determines a gradient vector field ∇f (which depends on g) by the equation

$$
g(\nabla f, X)=d f(X) \quad \text { for all vector fields } X
$$

(see Lee, bottom of page 342). Note that $d f(X)$ can also be written as $X f$.
Fix f and a regular point p of f and do Lee's Problem 13-21:
(a) Show that, for unit vectors $X \in T_{p} M$, the directional derivative $(X f)_{p}$ is maximal when X points in the direction of $(\nabla f)_{p}$.
Hint: Find a statement of the Cauchy-Schwarz inequality that includes a precise statement of when equality holds.
(b) Show that $|\nabla f|$ is equal to the value of the directional derivative in that direction.
(c) Show that $(\nabla f)_{p}$ is normal to the level set of f through p.
(d) Finally, show that in local coordinates ∇f is $\sum_{i, j} g^{i j} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{j}}$.
6. Do Lee's Problem 16-19: On \mathbb{R}^{n} with the euclidean metric and the standard orientation form $d x^{1} \wedge \cdots \wedge d x^{n}$,
(a) Calculate $* d x^{i}$ for $i=1, \ldots, n$.
(b) For $n=4$, calculate $*\left(d x^{i} \wedge d x^{j}\right)$ for $(i, j)=(1,2),(1,3),(1,4),(2,3),(2,4)$, and (3,4).
7. Do the following version of Lee's Problem 16-20: Let M be an oriented Riemannian manifold. A 2 -form ω on M is called self-dual if $* \omega=\omega$, and anti-self-dual if $* \omega=-\omega$.
(a) Show that every 2 -form ω can be uniquely written as the sum of a self-dual 2 -form α and an anti-self-dual 2 -form β.
(b) On $M=\mathbb{R}^{4}$ with the standard metric and orientation, write down a basis of the space of constant self-dual 2 -forms, and a similar basis for the anti-self-dual forms (both are 3dimensional vector spaces). Use your answer to Problem 5(b) above.
(c) What is the general form of a self-dual 2-form ω on \mathbb{R}^{4} in standard coordinates $\left\{x^{i}\right\}$? Its coefficients are three functions $f, g, h \in C^{\infty}\left(R^{4}\right)$.

Math 868 - Some Homework 9 Solutions

2. For each $p \in M$ and each non-zero $X \in T_{p} M$ we have

$$
\tilde{g}\left(f_{*} X, f_{*} X\right)=\left(f^{*} \tilde{g}\right)(X, X)=g(X, X) \geq 0
$$

because g is positive definite. This means that $f_{*} X \neq 0$ because \tilde{g} is positive definite. Thus f_{*} is injective for each $p \in M$, which means that f is an immersion.
3. Choose coordinates with $p=(0, \ldots, 0)$ and $q=(d, 0, \ldots 0)$ where $d=\operatorname{dist}(p, q)$. Then $\gamma_{0}(t)=$ $(t d, 0, \ldots, 0)$. For any path $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ with $\gamma(0)=p$ and $\gamma(1)=q$, write $\gamma(t)=\gamma_{0}(t)+x(t)$ with $x(0)=x(1)=0$. Then

$$
|\dot{\gamma}(t)|=\left|\dot{\gamma}_{0}(t)+\dot{x}(t)\right| \geq\left|\left(\dot{\gamma}_{0}(t)+\dot{x}(t)\right)^{1}\right| \geq\left|\dot{\gamma}_{0}(t)\right|+\dot{x}^{1}(t)
$$

since $\gamma_{0}^{i}(t)=0$ for all t and all $i \neq 1$ and $\gamma_{0}^{1}(t) \geq 0$. Therefore

$$
\begin{aligned}
L_{g_{0}}(\gamma)=\int_{0}^{1}|\dot{\gamma}(t)| d t & \geq \int_{0}^{1}\left|\dot{\gamma}_{0}(t)\right|+\dot{x}^{1}(t) d t \\
& =L_{g_{0}}\left(\gamma_{0}\right)+\left.\left(x^{1}(t)\right)\right|_{0} ^{1} \\
& =L_{g_{0}}\left(\gamma_{0}\right)+0
\end{aligned}
$$

4. Given an orientation-preserving map $\phi\left(y^{1}, \ldots y^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)$ we can write

$$
\frac{\partial}{\partial y^{i}}=\sum_{j} \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}} \quad \text { and } \quad d y^{i}=\sum_{j} \frac{\partial y^{i}}{\partial x^{i}} d x^{j}
$$

Let A be the matrix $\frac{\partial x^{j}}{\partial y^{i}}$, so A^{-1} is $\frac{\partial y^{j}}{\partial x^{i}}$. Then by the formula relating determinants and n-forms

$$
d y^{1} \wedge \cdots \wedge d y^{n}=A\left(d x^{1}\right) \wedge \cdots \wedge A\left(d y^{n}\right)=\left(\operatorname{det} A^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Also, the matrix for the metric in terms of the y coordinates is

$$
\tilde{g}_{i j}=g\left(\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{i}}\right)=g\left(\sum A_{i}^{k} \frac{\partial}{\partial x^{i}}, \sum A_{j}^{\ell} \frac{\partial}{\partial x^{\ell}}\right)=\sum A_{i}^{k} A_{j}^{\ell} g_{k \ell}
$$

Hence $\operatorname{det} \tilde{g}=(\operatorname{det} A)^{2} \operatorname{det} g$ with $\operatorname{det} A>0$ because ϕ preserves orientation.
Altogether,

$$
\begin{aligned}
\sqrt{\operatorname{det} \tilde{g}} d y^{1} \wedge \cdots \wedge d y^{n} & =(\operatorname{det} A \sqrt{\operatorname{det} g})\left(\operatorname{det} A^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\sqrt{\operatorname{det} g} d x^{1} \wedge \cdots \wedge d x^{n}
\end{aligned}
$$

Thus the formula for the volume form is the same in any positively-oriented coordinate chart.
5. Using the geodesic equation $\ddot{x}^{k}=-\Gamma_{p q}^{k} \dot{x}^{p} \dot{x}^{q}$ and using summation convention, we have

$$
\frac{1}{2}|\dot{\gamma}(t)|^{2}=\frac{d}{d t} g_{i j} \dot{x}^{i} \dot{x}^{j}=\partial_{k} g_{i j} \dot{x}^{k} \dot{x}^{i} \dot{x}^{j}+2 g_{k i} \dot{x}^{i} \ddot{x}^{k}=\partial_{k} g_{i j} \dot{x}^{k} \dot{x}^{i} \dot{x}^{j}-2 g_{k i} \Gamma_{p q}^{k} \dot{x}^{p} \dot{x}^{q} \dot{x}^{i}
$$

Changing the index k in the last term to ℓ and using the definition of the Christoffel symbols, this becomes

$$
\begin{aligned}
\frac{1}{2}|\dot{\gamma}(t)|^{2} & =\left[\partial_{k} g_{i j}-2 g_{\ell i} \cdot \frac{1}{2} g^{\ell m}\left(\partial_{j} g_{k m}+\partial_{k} g_{j m}-\partial_{m} g_{j k}\right)\right] \dot{x}^{i} \dot{x}^{j} \dot{x}^{k} \\
& =\left[\partial_{k} g_{i j}-\left(\partial_{j} g_{k i}+\partial_{k} g_{j i}-\partial_{i} g_{j k}\right)\right] \dot{x}^{i} \dot{x}^{j} \dot{x}^{k}
\end{aligned}
$$

and this vanishes because $\dot{x}^{i} \dot{x}^{j} \dot{x}^{k}$ is symmetric in i, j, k.

