Math 868 — Homework 8

Due Monday, Nov. 26

These problems are applications of Stokes' Theorem and the definition of DeRham cohomology.

1. Let H be the upper hemisphere $\{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$. Evaluate

$$\int_{\partial H} (x+y) \, dz + (y+z) \, dx + (x+z) \, dy$$

directly and by Stokes' Theorem. (Use orientation form $dx \wedge dy$.)

- 2. Let R be a region in R^3 oriented by $dx \wedge dy \wedge dz$, and let $\omega = \frac{1}{3} \left(z \, dx \wedge dy + x \, dy \wedge dz + y \, dz \wedge dx \right)$.
 - (a) Show that $\int_{\partial R} \omega = \operatorname{Vol}(R)$.
 - (b) Show that $d(\omega/r^3) = 0$, where $r^2 = x^2 + y^2 + z^2$
 - (c) Deduce that $H^2(S^2) \neq 0$, i.e. that there is a closed 2-form on S^2 that is not exact.
- 3. Suppose that a manifold M is the disjoint union of two components M_1 and M_2 . Explain why its DeRham cohomology is $H^*(M) = H^*(M_1) \oplus H^*(M_2)$.
- 4. Let M be an oriented n-manifold, and X is a compact, oriented p-dimensional submanifold of M. Define a map

$$I_X: \Omega^p(M) \to \mathbb{R}$$
 by $I_X(\omega) = \int_X \omega.$

- (a) Verify that I_X is linear.
- (b) Show that if $\omega_1, \omega_2 \in \Omega^p(M)$ are cohomologous then $I_X(\omega_1) = I_X(\omega_2)$. Consequently, I_X induces a linear map

$$I_X: H^p(M) \to \mathbb{R}.$$

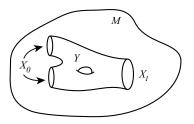
(c) Suppose that $X = \partial Y$ is the boundary of a compact, oriented (p+1)-dimensional submanifold $Y \subset M$. Show that $\overline{I}_X \equiv 0$.

Definition. Two compact oriented submanifolds X_0 and X_1 of M are *cobordant in* M if there is a compact oriented submanifold $Y \subset M$ with ∂Y is the disjoint union

$$\partial Y = X_1 \cup (-X_0),$$

where $-X_0$ denotes the manifold X_0 with its orientation reversed.

- (d) Show that if X_0 and X_1 are cobordant then the linear functionals \overline{I}_{X_0} and \overline{I}_{X_1} are equal.
- 5. Read the statement and proof of the "Zigzag Lemma" on page 461-2 of Lee (also done in class). Lee ends with three assertions:
 - (a) The cohomology class [a] is independent of the choices made,
 - (b) δ is linear, and
 - (c) The resulting long exact sequence is exact.



Of these, (a) was done is class and (b) is clear. Your task: verify (c). Note that this requires showing three inclusions $\ker d \subset \operatorname{im} d$ and three $\operatorname{im} d \subset \ker d$.

6. Let $X = S^n \setminus A$ where A is the union of $k \ge 1$ disjoint disks D_i . Use the Mayer-Vietoris sequence to compute the DeRham cohomology $H^*(X)$. *Hint:* begin by noting that $S^n \setminus D_1$ is diffeomorphic to R^n .