Math 868 - Homework 8

Due Monday, Nov. 26

These problems are applications of Stokes' Theorem and the definition of DeRham cohomology.

1. Let H be the upper hemisphere $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$. Evaluate

$$
\int_{\partial H}(x+y) d z+(y+z) d x+(x+z) d y
$$

directly and by Stokes' Theorem. (Use orientation form $d x \wedge d y$.)
2. Let R be a region in R^{3} oriented by $d x \wedge d y \wedge d z$, and let $\omega=\frac{1}{3}(z d x \wedge d y+x d y \wedge d z+y d z \wedge d x)$.
(a) Show that $\int_{\partial R} \omega=\operatorname{Vol}(R)$.
(b) Show that $d\left(\omega / r^{3}\right)=0$, where $r^{2}=x^{2}+y^{2}+z^{2}$
(c) Deduce that $H^{2}\left(S^{2}\right) \neq 0$, i.e. that there is a closed 2-form on S^{2} that is not exact.
3. Suppose that a manifold M is the disjoint union of two components M_{1} and M_{2}. Explain why its DeRham cohomology is $H^{*}(M)=H^{*}\left(M_{1}\right) \oplus H^{*}\left(M_{2}\right)$.
4. Let M be an oriented n-manifold, and X is a compact, oriented p-dimensional submanifold of M. Define a map

$$
I_{X}: \Omega^{p}(M) \rightarrow \mathbb{R} \quad \text { by } \quad I_{X}(\omega)=\int_{X} \omega
$$

(a) Verify that I_{X} is linear.
(b) Show that if $\omega_{1}, \omega_{2} \in \Omega^{p}(M)$ are cohomologous then $I_{X}\left(\omega_{1}\right)=I_{X}\left(\omega_{2}\right)$. Consequently, I_{X} induces a linear map

$$
\bar{I}_{X}: H^{p}(M) \rightarrow \mathbb{R}
$$

(c) Suppose that $X=\partial \underline{Y}$ is the boundary of a compact, oriented ($p+1$)-dimensional submanifold $Y \subset M$. Show that $\bar{I}_{X} \equiv 0$.

Definition. Two compact oriented submanifolds X_{0} and X_{1} of M are cobordant in M if there is a compact oriented submanifold $Y \subset M$ with ∂Y is the disjoint union

$$
\partial Y=X_{1} \cup\left(-X_{0}\right)
$$

where $-X_{0}$ denotes the manifold X_{0} with its orientation reversed.

(d) Show that if X_{0} and X_{1} are cobordant then the linear functionals $\bar{I}_{X_{0}}$ and $\bar{I}_{X_{1}}$ are equal.
5. Read the statement and proof of the "Zigzag Lemma" on page 461-2 of Lee (also done in class). Lee ends with three assertions:
(a) The cohomology class $[a]$ is independent of the choices made,
(b) δ is linear, and
(c) The resulting long exact sequence is exact.

Of these, (a) was done is class and (b) is clear. Your task: verify (c). Note that this requires showing three inclusions $\operatorname{ker} d \subset \operatorname{im} d$ and three $\operatorname{im} d \subset \operatorname{ker} d$.
6. Let $X=S^{n} \backslash A$ where A is the union of $k \geq 1$ disjoint disks D_{i}. Use the Mayer-Vietoris sequence to compute the DeRham cohomology $H^{*}(X)$. Hint: begin by noting that $S^{n} \backslash D_{1}$ is diffeomorphic to R^{n}.

