Math 868 - Some Solutions to Homework 7

(2) (a) Because M_{1} and M_{2} are orientable, we can find nowhere-vanishing forms $\sigma_{1} \in \Omega^{n}\left(M_{1}\right)$ and $\sigma_{2} \in \Omega^{n}\left(M_{2}\right)$. Because $\Lambda^{n} T^{*} M$ is one-dimensional, there is a function f such that $\sigma_{1}=f \sigma_{2}$ on $M_{1} \cap M_{2}$. Furthermore, since σ_{1} and σ_{2} vanish nowhere and $M_{1} \cap M_{2}$ is connected, we have either $f>0$ or $f<0$ on $M_{1} \cap M_{2}$. After replacing σ_{2} by $-\sigma_{2}$ if necessary, we can assume that $f>0$. Let $\left\{\beta_{1}, \beta_{2}\right\}$ be a partition of unity subordinate to the cover $\left\{M_{1}, M_{2}\right\}$ of M. Then

$$
\sigma=\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}
$$

is an n-form on M that vanishes nowhere because $\sigma=\sigma_{1}$ on $M_{1} \backslash M_{2}, \sigma=\sigma_{2}$ on $M_{2} \backslash M_{1}$, and $\sigma=\left(\beta_{1}+f \beta_{2}\right) \sigma_{1}$ with $\beta_{1}+f \beta_{2}>0$ on $M_{1} \cap M_{2}$. Hence σ is an orientation form for M, so M is orientable.
(b) Write S^{n} as $M_{1} \cup M_{2}$ where M_{1} (resp. M_{2}) is an neighborhood of the northern (resp. southern) hemisphere, each diffeomorphic to the n-disk, so that $M_{1} \cap M_{2}$ is a connected neighborhood of the equation. Then M_{1} and M_{2} are orientable and hence S^{n} is connected by part (a).
(3) M and N are diffeomorphic, so have the same dimension n. Because they are orientable we can fix orientation forms σ_{1} on M and σ_{2} on N; both are nowhere-vanishing n-forms. As in Problem 2, there is a function f on M such that $\phi^{*} \sigma_{2}=f \cdot \sigma_{1}$. If we show that f vanishes nowhere then, since M is connected, we have either $f>0$ (which means that ϕ is orientation-preserving), or $f<0$ (which means that ϕ is orientation-reversing).
Thus it suffices to fix $p \in M$ and show that $f(p) \neq 0$. Since ϕ is a diffeomorphism, the Local Immersion Theorem implies that there are coordinates $\left\{x^{i}\right\}$ around p and $\left\{y^{i}\right\}$ around $\phi(p)$ such that $\phi\left(x^{1}, \ldots, x^{n}\right)=\left(y^{1}, \ldots, y^{n}\right)$. In these coordinates $\sigma_{1}=\lambda d x^{1} \wedge \cdots \wedge d x^{n}$ and $\sigma_{2}=\mu d y^{1} \wedge$ $\cdots \wedge d y^{n}$ for non-vanishing functions λ and μ. Then

$$
\begin{aligned}
\phi^{*} \sigma_{2} & =(\mu \circ \phi)\left(\phi^{*} d y^{1}\right) \wedge \cdots \wedge\left(\phi^{*} d y^{n}\right) \\
& =(\mu \circ \phi)\left(d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =\lambda^{-1}(\mu \circ \phi) \sigma_{1}
\end{aligned}
$$

where $f=\lambda^{-1}(\mu \circ \phi)$ vanishes nowhere.
(5) Let $\alpha: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ be the map $\alpha(x)=-x$; this restricts to the antipodal map $\alpha: S^{n} \rightarrow S^{n}$. As in Proposition 13.14 in Lee, the orientation form of S^{n} is the restriction of

$$
\sigma=\iota_{N}\left(d x^{1} \wedge \cdots \wedge d x^{n+1}\right)
$$

to S^{n}, where N is the outward unit normal $N(x)=x$ for $x \in S^{n}$. Note that $\alpha^{-1}=\alpha$ and that $\alpha_{*}(N(x))=-x=N(-x)$. Therefore

$$
\begin{aligned}
\alpha^{*} \sigma & =\iota_{\left(\alpha^{-1}\right)_{*} N} \alpha^{*}\left(d x^{1} \wedge \cdots \wedge d x^{n+1}\right) \\
& =\iota_{N}\left(\alpha^{*} d x^{1} \wedge \cdots \wedge \alpha^{*} d x^{n+1}\right) \\
& =(-1)^{n+1} \iota_{N}\left(d x^{1} \wedge \cdots \wedge d x^{n+1}\right) \\
& =(-1)^{n+1} \sigma
\end{aligned}
$$

Thus the antipodal map is orientation-preserving if and only if n is odd.

