Math 868 - Homework 7

Due Wednesday, Nov. 14

Problems on Orientations. Problems 2-4 below are re-wordings of Lee's Problems 15-1, 15-2, and 15-3.

1. Use orientation forms to show that:
(a) An open subset $U \subset M$ of an orientable manifold is orientable.
(b) The product $M \times N$ of two orientable manifolds is orientable.
2. Suppose that a manifold M is the union of two oriented open submanifolds M_{1}, M_{2} whose intersection $M_{1} \cap M_{2}$ is connected.
(a) Prove that M is orientable.

Hint: We know there exists a function β with support in M_{1}, with $\beta(x) \geq 0$ for all x, and with $\beta \equiv 0$ on $M \backslash M_{2}$.
(b) Use this to give a proof that S^{n} is orientable.
3. Let $\phi: M \rightarrow N$ be a smooth map between manifolds which is a local diffeomorphism (so $D F$ is invertible). Show that if M is connected then ϕ is either orientation-preserving, or orientation-reversing (see the definitions in Lee on page 383).
4. For $n \geq 1$, let S^{n} be the unit sphere in \mathbb{R}^{n+1}, and let $\alpha: S^{n} \rightarrow S^{n}$ be the antipodal map, defined by $\alpha(x)=-x$. Show that α is orientation preserving if and only if n is odd. Hint: By Problem 2 above, it suffices to compare orientations for $(D \alpha)_{p}: T_{p} S^{n} \rightarrow T_{-p} S^{M}$ where p is the north pole.

Problems on Integration. Read Lee, pages 400-410 for background.
5. Evaluate $\int_{S} x d y \wedge d z+y d x \wedge d y$ where S is the oriented surface parameterized by

$$
\phi:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}
$$

by $\phi(u, v)=\left(u+v, u^{2}-v^{2}, u v\right)$ and oriented by the orientation form $d x \wedge d y$.
6. Let $A=\left\{(x, y, z) \mid y=x^{2}+z^{2}, y \leq 4\right\}$, oriented by the orientation form $d z \wedge d x$. Evaluate:
(a) $\int_{A} z d x \wedge d y$
and
(b) $\int_{A} e^{y} d z \wedge d x$.

Hint: use polar coordinates in the (x, z)-plane.
7. Do Problem 16-2 on page 434 of Lee.

