Math 868 — Homework 7

Due Wednesday, Nov. 14

Problems on Orientations. Problems 2-4 below are re-wordings of Lee's Problems 15-1, 15-2, and 15-3.

- 1. Use orientation forms to show that:
 - (a) An open subset $U \subset M$ of an orientable manifold is orientable.
 - (b) The product $M \times N$ of two orientable manifolds is orientable.
- 2. Suppose that a manifold M is the union of two oriented open submanifolds M_1 , M_2 whose intersection $M_1 \cap M_2$ is connected.
 - (a) Prove that M is orientable. *Hint:* We know there exists a function β with support in M_1 , with $\beta(x) \ge 0$ for all x, and with $\beta \equiv 0$ on $M \setminus M_2$.
 - (b) Use this to give a proof that S^n is orientable.
- 3. Let $\phi: M \to N$ be a smooth map between manifolds which is a local diffeomorphism (so DF is invertible). Show that if M is connected then ϕ is either orientation-preserving, or orientation-reversing (see the definitions in Lee on page 383).
- 4. For $n \ge 1$, let S^n be the unit sphere in \mathbb{R}^{n+1} , and let $\alpha : S^n \to S^n$ be the antipodal map, defined by $\alpha(x) = -x$. Show that α is orientation preserving if and only if n is odd. *Hint:* By Problem 2 above, it suffices to compare orientations for $(D\alpha)_p : T_p S^n \to T_{-p} S^M$ where p is the north pole.

Problems on Integration. Read Lee, pages 400-410 for background.

5. Evaluate $\int_S x \, dy \wedge dz + y \, dx \wedge dy$ where S is the oriented surface parameterized by

$$\phi: [0,1] \times [0,1] \to \mathbb{R}^3$$

by $\phi(u, v) = (u + v, u^2 - v^2, uv)$ and oriented by the orientation form $dx \wedge dy$.

6. Let $A = \{(x, y, z) | y = x^2 + z^2, y \le 4\}$, oriented by the orientation form $dz \wedge dx$. Evaluate:

(a)
$$\int_{A} z \, dx \wedge dy$$
 and (b) $\int_{A} e^{y} \, dz \wedge dx$

Hint: use polar coordinates in the (x, z)-plane.

7. Do Problem 16-2 on page 434 of Lee.