Math 868 — Homework 6

Due Monday, Nov. 5

- 1. Calculate $d\omega$ for the following forms on \mathbb{R}^3 .
 - (a) $\omega = z^2 dx \wedge dy + (z^2 + 2y) dx \wedge dz$
 - (b) $13x dx + y^2 dy + xyz dz$
 - (c) f dg where f and g are functions
 - (d) $(x+2y^3) (dz \wedge dx + \frac{1}{2} dy \wedge dx).$
- 2. Do Problem 14-6 in Lee, page 375. (In part (c) $\iota: S^2 \to \mathbb{R}^3$ is the inclusion).
- 3. Do Problem 14-7 on the same page.
- 4. To any three functions $P, Q, R \in C^{\infty}(\mathbb{R}^3)$, we can associate three opbjects on \mathbb{R}^3 :
 - The vector field $X = P \frac{\partial}{\partial x} + Q \frac{\partial}{\partial y} + R \frac{\partial}{\partial z}$.
 - The 1-form $\omega_X = Pdx + Qdy + Rdz$.
 - The 2-from $\eta_X = P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dz$.

Using this correspondence, show that d is related to the classical operators of vector calculus as follows:

- (a) For each $f \in C^{\infty}(M)$, $df = \omega_{\operatorname{grad} f}$.
- (b) $d\omega_X = \eta_{\operatorname{curl} f}$.
- (c) $d\eta_X = (\operatorname{div} X) \, dx \wedge dy \wedge dz$.

Then show that the fact that $d^2 = 0$ implies

- (d) $\operatorname{curl}(\operatorname{grad}(f)) = 0$
- (e) div(curl (X) = 0