Math 868 — Homework 5

Due Wednesday, Oct. 24

- 1. Follow Lee page 274, to answer this: Let V be a vector space with dual space V^* . Assume that V has a countable basis.
 - (a) Define a linear map $\phi: V \to V^{**}$ that is natural (ie defined without using any basis).
 - (b) Prove that ϕ is injective.
 - (c) When V is finite-dimensional, prove that ϕ is an isomorphism.
- 2. Let $c: [0,1] \to \mathbb{R}^3$ be the path $c(t) = (t, t^2, t^3)$. Evaluate $\int_C \omega$ where $\omega = y \, dx + 2x \, dy + y \, dz$.

3. For
$$\alpha = \frac{1}{2}(x \, dy - y \, dx)$$
, find

- (a) $\int_{C_R} \alpha$ where C_R is the circle $\{x^2 + y^2 = R^2\}$ in \mathbb{R}^2 with counterclockwise orientation.
- (b) $\int_T \alpha$ where T is the oriented triangle in \mathbb{R}^2 shown.

- 4. Determine whether each form is exact. If it is, find all functions f such that $\omega = df$.
 - (a) $\omega = xy \, dx + \frac{1}{2}x^2 \, dy$ on \mathbb{R}^2 .
 - (b) $\omega = x \, dx + xz \, dy + xy \, dz$ on \mathbb{R}^3 .
 - (c) $\omega = y \, dx$ on \mathbb{R}^2 .

(d)
$$\omega = \left(\frac{1}{x^2} + \frac{1}{y^2}\right) (y \ dx - x \ dy)$$
 on $\{(x, y) \mid x \neq 0 \text{ and } y \neq 0\}.$

5. Let ω be the 1-form $\omega = \left(\frac{-y}{x^2+y^2}\right) dx + \left(\frac{x}{x^2+y^2}\right) dy$ on $\mathbb{R}^3 - \{z - \text{axis}\}$. Find $\int_{C_1} \omega$ and $\int_{C_2} \omega$

where C_1 and C_2 are the two curves shown on the torus of radius 1 around the core circle of radius 2 in the xy plane.

- 6. Write down a 1-form η on $\{(x, y, z) | z \neq 0 \text{ and } x^2 + y^2 \neq 4\}$ so that the numbers $\int_{C_1} \eta$ and $\int_{C_1} \eta$ are the same as integrals of ω in Problem 5 but in the opposite order. Verify by integrating.
- 7. Let V be an n-dimensional vector space, and $\omega \in \Lambda^2(V^*)$.
 - (a) Show that there is basis $\{e^1, e^2, \dots e^n\}$ of V^* such that

$$\omega = e^1 \wedge e^2 + e^3 \wedge e^4 + \dots + e^{2r-1} \wedge e^{2r} \qquad \text{for some } r.$$

(b) Show that $\omega^r \neq 0$ but $\omega^{r+1} = 0$. Thus r, called the rank of ω , depends only on ω .

Some solutions and hints to the above problems:

2. $\frac{34}{15}$.

- 3. In both (a) and (b) the integral is equal to the area enclosed by the path.
- 4. (a) and (d) are exact. Once you find f, you can check yourself that it works.
- 5. Convert to cylindrical coordinates (r, θ, z) , then do the integrals.
- 6. Ask: what should be the singular set? Then use coordinates (r, θ, z) again.

7. Steps:

- (a) Identify V with \mathbb{R}^n . Define a skew-symmetric matrix A by $A_{ij} = \omega(e_i, e_j)$ where $\{e_i\}$ is the standard basis.
- (b) If $\omega \neq 0$ then there is a v such that $Av \neq 0$. Use the fact that the dot product in \mathbb{R}^n satisfies $Ax \cdot y = x \cdot A^T y$ to show that v and Av are linearly independent.
- (c) Set $f_1 = v$, $f_2 = Av$, and complete these to a basis $\{f_1, f_2, f_3, ...\}$ of V. Show that, in this basis, $\omega = \sum A_{ij} f^i \wedge f^j$ with $A_{12} \neq 0$.
- (d) Then set

$$\begin{cases} v_1 = f_1 - \frac{1}{A_{12}} \sum_{\ell \ge 3} A_{2\ell} f^\ell \\ v_2 = A_{12} f^2 + A_{13} f^3 + \dots + A_{1n} f^n. \end{cases}$$

(e) Proceed by induction.