Some HW4 solutions

4. Identify Mat $_{n}=\{n \times n$ real matrices $\}$ with $\mathbb{R}^{n^{2}}$ and define $\Phi: M a t_{n} \rightarrow M a t_{n}$ by $\phi\left(A_{i j}\right)=$ $\left(A A^{T}\right)_{i j}=\sum_{j} A_{i j} A_{i j}$. Then Φ is continuous (it is a quadratic polynomial!), so $O(n)=\Phi^{-1}(I d$.) is closed. Furthermore, for each $A \in O(n)$, we have $\sum_{j} A_{i j}^{2}=1$, so $\|A\|^{2}=\sum_{i j} A_{i j}^{2}=n$. Thus $O(n)$ is closed and bounded in $\mathbb{R}^{n^{2}}$, so compact.
5. If $A \in T_{I} O(n)$ there is a path $B(t)$ in $O(n)$ with $B(0)=I$ and $\dot{B}(0)=A$ satisfies $B^{T}(t) B(t)=I$. Applying $\frac{d}{d t}$ and evaluating at $t=0$ gives $0=\dot{B}^{T}(0) \cdot I+I \cdot \dot{B}^{T}(0)=A^{T}+A$, so A is skewsymmetric. Thus $T_{I} O(n) \subset \mathfrak{o}(n)=\{n \times n$ skew-symmetric matrices $\}$. Conversely, if $A \in \mathfrak{o}(n)$, then $B(t)=e^{t A}=I+t A+\frac{1}{2} t^{2} A^{2}+\cdots$ satisfies $B(0)=I, \dot{B}(0)=A$ and

$$
B^{T}(t) B(t)=e^{t A^{T}} e^{t A}=e^{-t A} e^{t A}=I
$$

Consequently, $B(t)$ lies in $O(n)$ for all t and hence $A \in T_{I} O(n)$. Therefore $T_{I} O(n)=\mathfrak{o}(n)$.
6. (a) First, $U(n)$ is a group: if $A, B \in U(n)$ then (i) $(A B)^{*}(A B)=B^{*} A^{*} A B=B^{*} B=I$ and (ii) $A^{*} A=I \Longrightarrow A^{-1}=A^{*} \Longrightarrow\left(A^{-1}\right)^{*}=A^{* *}=A \Longrightarrow\left(A^{-1}\right)^{*} A^{-1}=I$. Thus $A B \in U(n)$ and $A^{-1} \in U(n)$.
Let $H(n)=\left\{n \times n\right.$ cx. matrices $\left.\mid A^{*}=A\right\}$ be the vector space of hermitian matrices and define $\Phi: \mathbb{C}^{n^{2}} \rightarrow H(n)$ by $\Phi(A)=A^{*} A$. This is smooth (it is quadratic in the entries of A), $\Phi^{-1}(I d)=U(n)$, and the image lies in $H(n)$ since $\left(A^{*} A\right)^{*}=A^{*} A^{* *}=A^{*} A$. One shows

$$
d \Phi_{A} \text { is onto }
$$

exactly as was done in class for $O(n)$ with A^{T} replaced everywhere by A^{*}. Hence $U(n)$ is an immersed submanifold of $\mathbb{C}^{n^{2}}$. Finally, the group operations are smooth because they are restrictions of the smooth group operations of $G L(n, \mathbb{C})$ to the submanifold $U(n)$.
(b) Repeating Problem 5 above, with A^{T} replaced everywhere by A^{*}, shows that $T_{I} U(n)$ is the space $\mathfrak{u}(n)=\left\{n \times n\right.$ cx. matrices $\left.\mid A^{*}=-A\right\}$ of skew-hermitian matrices.
Alternatively, one can show $T_{I} U(n) \subset \mathfrak{u}(n)$ and then use a dimension count. For this, note that if $A=B+C i$ then $A^{*}=A$ iff B is symmetric and C is skew-symmetric. Hence

$$
\operatorname{dim} H(n)=\frac{n(n+1)}{2}+\frac{n(n-1)}{2}=n^{2} \quad \text { and similarly } \quad \operatorname{dim} \mathfrak{u}(n)=n^{2}
$$

7. (a) For any $x, g, h \in G$ we have $L_{g} L_{h}(x)=L_{g}(h x)=g h x=L_{g h}(x)$. In particular, $L_{g} L_{g^{-1}}(x)=$ x and $L_{g^{-1}} L_{g}(x)=x$. Thus $L_{g} L_{h}=L_{g h}$ and L_{g} is a diffeomorphism with inverse $L_{g^{-1}}$.
(b) By assumption there is a neighborhood U of $I \in G$ and a chart $\phi: U \rightarrow V \subset \mathbb{R}^{n}$ on which the group operations are smooth. For each $g \in G$ set $U_{g}=L_{g}(U)$ and let $\phi_{g}: U_{g} \rightarrow V$ be $\phi_{g}=\phi \circ L_{g^{-1}}$. Then U_{g} is a neighborhood of g and ϕ_{g} is a bijection because it is the composition of two bijection). Define an atlas by

$$
\mathcal{A}=\left\{\left(U_{g}, \phi_{g}\right) \mid g \in G\right\}
$$

These U_{g} cover G. We will show that whenever $U_{g} \cap U_{h} \neq \emptyset$ the transition map $\phi_{h}^{-1} \phi_{g}$: $U_{g} \cap U_{h} \rightarrow U_{g} \cap U_{h}$ is smooth. For this, first note that

$$
\phi_{h} \phi_{g}^{-1}=\phi \circ L_{h^{-1}}\left(\phi \circ L_{g^{-1}}\right)^{-1}=\phi \circ L_{h^{-1}} \circ L_{g} \circ \phi^{-1}=\phi \circ L_{h^{-1} g} \circ \phi^{-1}
$$

This looks smooth, but be careful: we only know that L_{g} is smooth for $g \in U$. To deal with this problem, fix $x \in U_{g} \cap U_{h}$. Since $x \in U_{h}=L_{h} U$ we have $h^{-1} x \in U$, so $L_{h^{-1} x}$ is smooth by the hypothesis. Similarly, since $x \in U_{g}$ we have $g^{-1} x \in U$, so $L_{g^{-1} x}$ is smooth and hence so is its inverse. Therefore

$$
L_{h^{-1} g}=L_{\left(h^{-1} x\right)\left(x^{-1} g\right)}=L_{h^{-1} x} \circ\left(L_{g^{-1} x}\right)^{-1}
$$

is smooth. This shows that all transition maps are smooth, so \mathcal{A} defines a differentiable structure on G.
(c) One should also note that the assumption that G is a topologicial Lie group means that it is a topological manifold and hence, with out definitions, it is a metric space.

Homework 4 Comments

Scoring: Total 23 points

Problem	Points
1	4
2	3
3	2
4	2
5	3
6	$4(2$ each $)$
7	$2+(3$ bonus points $)$

Common mistakes (by Problem number):

1. The basic idea is to choose a path $\sigma:[0,1] \rightarrow M$ from p to q, and extend the tangent vector field along the path to a vector field on all of M. One must use a cutoff function (or a partition of unity) to make the extended vector field compactly supported. The flow that it generates is then complete (by Theorem 9.16 Lee).
A complete flow is needed to ensure that Φ_{t} is defined for all t, and that its domain is all of M; in particular, is a diffeomorphism for $t=1$. For vector fields that are not compactly supported, one knows only that the diffeomorphism is globally defined only in a small neighborhood of $t=0$.

2(b). One common mistake is that the target space should be fixed when defining a homotopy. In particular, for maps $S^{1} \rightarrow S^{n}$, each intermediate map $f_{t}=F(t, \cdot)$ must be a map into S^{n}.
Another mistake is that in order to use stereographic projection from the north pole N, one need to ensure $N \notin f\left(S^{1}\right)$. This can be done by a rotation, provided that there is some point $p \notin f\left(S^{1}\right)$. This is basically obvious, and I gave full credit if you just assumed it.
Here is a proof assuming that f is $C^{1}:$ If $(d f)_{x}=0$ for all $x \in S^{1}$, then f is a constant map, so of course there is a $p \notin f\left(S^{1}\right)$. Otherwise, fix x with $(d f)_{x} \neq 0$. By the local immersion theorem there is a neighborhood $U=(x-\varepsilon, x+\varepsilon)$ of x and coordinates around p such that $f(t)=(t, 0, \ldots, 0)$ for $t \in U$.
Remark. Even assuming that f is only continuous, one can first homotope f to a nonsurjective map, see Proposition 1.14 in A. Hatcher's book for a proof. The basic idea: for $x \in S^{2}$, let $B \subset S^{2}$ be a small open ball centered at x. Then $f^{-1}(B)$ is a union of intervals in $(0,1)$ and $f^{-1}(x)$ is finite, so there are finitely many intervals in $f^{-1}(B)$ containing x. For each of these
intervals push the image to the boundary of B. In this way we homotope f to a new map which avoid x in its image.
4. $O(n)$ is closed simply because $O(n)=F^{-1}(I)$, where $F(A)=A A^{T}$ continuous, and I as a single point is compact. The Regular Preimage Theorem is not needed.

Alan Zhe Zhang

