
Some HW4 solutions

4. Identify Matn = {n ⇥ n real matrices} with Rn2

and define � : Matn ! Matn by �(Aij) =
(AAT )ij =

P
j AijAij . Then � is continuous (it is a quadratic polynomial!), so O(n) = ��1(Id.)

is closed. Furthermore, for each A 2 O(n), we have
P

j A
2
ij = 1, so kAk

2 =
P

ij A
2
ij = n. Thus

O(n) is closed and bounded in Rn2

, so compact.

5. If A 2 TIO(n) there is a path B(t) in O(n) with B(0) = I and Ḃ(0) = A satisfies BT (t)B(t) = I.
Applying d

dt and evaluating at t = 0 gives 0 = ḂT (0) · I + I · ḂT (0) = AT + A, so A is skew-
symmetric. Thus TIO(n) ⇢ o(n) = {n⇥ n skew-symmetric matrices}. Conversely, if A 2 o(n),
then B(t) = etA = I + tA+ 1

2 t
2A2 + · · · satisfies B(0) = I, Ḃ(0) = A and

BT(t)B(t) = etA
T

etA = e�tAetA = I.

Consequently, B(t) lies in O(n) for all t and hence A 2 TIO(n). Therefore TIO(n) = o(n).

6. (a) First, U(n) is a group: if A,B 2 U(n) then (i) (AB)⇤(AB) = B⇤A⇤AB = B⇤B = I and
(ii)A⇤A = I =) A�1 = A⇤ =) (A�1)⇤ = A⇤⇤ = A =) (A�1)⇤A�1 = I. Thus AB 2 U(n)
and A�1

2 U(n).

Let H(n) = {n ⇥ n cx. matrices |A⇤ = A} be the vector space of hermitian matrices and

define � : Cn2

! H(n) by �(A) = A⇤A. This is smooth (it is quadratic in the entries of A),
��1(Id) = U(n), and the image lies in H(n) since (A⇤A)⇤ = A⇤A⇤⇤ = A⇤A. One shows

d�A is onto

exactly as was done in class for O(n) with AT replaced everywhere by A⇤. Hence U(n) is

an immersed submanifold of Cn2

. Finally, the group operations are smooth because they are
restrictions of the smooth group operations of GL(n,C) to the submanifold U(n).

(b) Repeating Problem 5 above, with AT replaced everywhere by A⇤, shows that TIU(n) is the
space u(n) = {n⇥ n cx. matrices |A⇤ = �A} of skew-hermitian matrices.

Alternatively, one can show TIU(n) ⇢ u(n) and then use a dimension count. For this, note that
if A = B + Ci then A⇤ = A i↵ B is symmetric and C is skew-symmetric. Hence

dimH(n) =
n(n+ 1)

2
+

n(n� 1)

2
= n2 and similarly dim u(n) = n2.

7. (a) For any x, g, h 2 G we have LgLh(x) = Lg(hx) = ghx = Lgh(x). In particular, LgLg�1(x) =
x and Lg�1Lg(x) = x. Thus LgLh = Lgh and Lg is a di↵eomorphism with inverse Lg�1 .

(b) By assumption there is a neighborhood U of I 2 G and a chart � : U ! V ⇢ Rn on which
the group operations are smooth. For each g 2 G set Ug = Lg(U) and let �g : Ug ! V
be �g = � � Lg�1 . Then Ug is a neighborhood of g and �g is a bijection because it is the
composition of two bijection). Define an atlas by

A = {(Ug,�g) | g 2 G}.

These Ug cover G. We will show that whenever Ug \ Uh 6= ; the transition map ��1
h �g :

Ug \ Uh ! Ug \ Uh is smooth. For this, first note that

�h�
�1
g = � � Lh�1 (� � Lg�1)�1 = � � Lh�1 � Lg � �

�1 = � � Lh�1g � �
�1.



This looks smooth, but be careful: we only know that Lg is smooth for g 2 U . To deal
with this problem, fix x 2 Ug \ Uh. Since x 2 Uh = LhU we have h�1x 2 U , so Lh�1x is
smooth by the hypothesis. Similarly, since x 2 Ug we have g�1x 2 U , so Lg�1x is smooth
and hence so is its inverse. Therefore

Lh�1g = L(h�1x)(x�1g) = Lh�1x �
�
Lg�1x

��1

is smooth. This shows that all transition maps are smooth, so A defines a di↵erentiable
structure on G.

(c) One should also note that the assumption that G is a topologicial Lie group means that it
is a topological manifold and hence, with out definitions, it is a metric space.

Homework 4 Comments

Scoring: Total 23 points Problem Points
1 4
2 3
3 2
4 2
5 3
6 4 (2 each)
7 2+(3 bonus points)

Common mistakes (by Problem number):

1. The basic idea is to choose a path � : [0, 1] ! M from p to q, and extend the tangent vector
field along the path to a vector field on all of M . One must use a cuto↵ function (or a partition
of unity) to make the extended vector field compactly supported. The flow that it generates is
then complete (by Theorem 9.16 Lee).

A complete flow is needed to ensure that �t is defined for all t, and that its domain is all of M ;
in particular, is a di↵eomorphism for t = 1. For vector fields that are not compactly supported,
one knows only that the di↵eomorphism is globally defined only in a small neighborhood of t = 0.

2(b). One common mistake is that the target space should be fixed when defining a homotopy. In
particular, for maps S1

! Sn, each intermediate map ft = F (t, ·) must be a map into Sn
.

Another mistake is that in order to use stereographic projection from the north pole N , one
need to ensure N /2 f(S1). This can be done by a rotation, provided that there is some point
p /2 f(S1). This is basically obvious, and I gave full credit if you just assumed it.

Here is a proof assuming that f is C1: If (df)x = 0 for all x 2 S1, then f is a constant map,
so of course there is a p /2 f(S1). Otherwise, fix x with (df)x 6= 0. By the local immersion
theorem there is a neighborhood U = (x � ", x + ") of x and coordinates around p such that
f(t) = (t, 0, . . . , 0) for t 2 U .

Remark. Even assuming that f is only continuous, one can first homotope f to a nonsurjective
map, see Proposition 1.14 in A. Hatcher’s book for a proof. The basic idea: for x 2 S2, let
B ⇢ S2 be a small open ball centered at x. Then f�1(B) is a union of intervals in (0, 1) and
f�1(x) is finite, so there are finitely many intervals in f�1(B) containing x. For each of these



intervals push the image to the boundary of B. In this way we homotope f to a new map which
avoid x in its image.

4 . O(n) is closed simply because O(n) = F�1(I), where F (A) = AAT continuous, and I as a
single point is compact. The Regular Preimage Theorem is not needed.
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