Some HW4 solutions

- 4. Identify $Mat_n = \{n \times n \text{ real matrices}\}$ with \mathbb{R}^{n^2} and define $\Phi : Mat_n \to Mat_n$ by $\phi(A_{ij}) = (AA^T)_{ij} = \sum_j A_{ij}A_{ij}$. Then Φ is continuous (it is a quadratic polynomial!), so $O(n) = \Phi^{-1}(Id.)$ is closed. Furthermore, for each $A \in O(n)$, we have $\sum_j A_{ij}^2 = 1$, so $||A||^2 = \sum_{ij} A_{ij}^2 = n$. Thus O(n) is closed and bounded in \mathbb{R}^{n^2} , so compact.
- 5. If $A \in T_I O(n)$ there is a path B(t) in O(n) with B(0) = I and $\dot{B}(0) = A$ satisfies $B^T(t)B(t) = I$. Applying $\frac{d}{dt}$ and evaluating at t = 0 gives $0 = \dot{B}^T(0) \cdot I + I \cdot \dot{B}^T(0) = A^T + A$, so A is skew-symmetric. Thus $T_I O(n) \subset \mathfrak{o}(n) = \{n \times n \text{ skew-symmetric matrices}\}$. Conversely, if $A \in \mathfrak{o}(n)$, then $B(t) = e^{tA} = I + tA + \frac{1}{2}t^2A^2 + \cdots$ satisfies B(0) = I, $\dot{B}(0) = A$ and

$$B^{T}(t)B(t) = e^{tA^{T}}e^{tA} = e^{-tA}e^{tA} = I.$$

Consequently, B(t) lies in O(n) for all t and hence $A \in T_I O(n)$. Therefore $T_I O(n) = \mathfrak{o}(n)$.

6. (a) First, U(n) is a group: if $A, B \in U(n)$ then (i) $(AB)^*(AB) = B^*A^*AB = B^*B = I$ and (ii) $A^*A = I \implies A^{-1} = A^* \implies (A^{-1})^* = A^{**} = A \implies (A^{-1})^*A^{-1} = I$. Thus $AB \in U(n)$ and $A^{-1} \in U(n)$.

Let $H(n) = \{n \times n \text{ cx. matrices } | A^* = A\}$ be the vector space of hermitian matrices and define $\Phi : \mathbb{C}^{n^2} \to H(n)$ by $\Phi(A) = A^*A$. This is smooth (it is quadratic in the entries of A), $\Phi^{-1}(Id) = U(n)$, and the image lies in H(n) since $(A^*A)^* = A^*A^{**} = A^*A$. One shows

$d\Phi_A$ is onto

exactly as was done in class for O(n) with A^T replaced everywhere by A^* . Hence U(n) is an immersed submanifold of \mathbb{C}^{n^2} . Finally, the group operations are smooth because they are restrictions of the smooth group operations of $GL(n, \mathbb{C})$ to the submanifold U(n).

(b) Repeating Problem 5 above, with A^T replaced everywhere by A^* , shows that $T_I U(n)$ is the space $\mathfrak{u}(n) = \{n \times n \text{ cx. matrices } | A^* = -A\}$ of skew-hermitian matrices. Alternatively, one can show $T_I U(n) \subset \mathfrak{u}(n)$ and then use a dimension count. For this, note that

if A = B + Ci then $A^* = A$ iff B is symmetric and C is skew-symmetric. Hence

dim
$$H(n) = \frac{n(n+1)}{2} + \frac{n(n-1)}{2} = n^2$$
 and similarly dim $\mathfrak{u}(n) = n^2$.

- 7. (a) For any $x, g, h \in G$ we have $L_g L_h(x) = L_g(hx) = ghx = L_{gh}(x)$. In particular, $L_g L_{g^{-1}}(x) = x$ and $L_{g^{-1}} L_g(x) = x$. Thus $L_g L_h = L_{gh}$ and L_g is a diffeomorphism with inverse $L_{g^{-1}}$.
 - (b) By assumption there is a neighborhood U of $I \in G$ and a chart $\phi : U \to V \subset \mathbb{R}^n$ on which the group operations are smooth. For each $g \in G$ set $U_g = L_g(U)$ and let $\phi_g : U_g \to V$ be $\phi_g = \phi \circ L_{g^{-1}}$. Then U_g is a neighborhood of g and ϕ_g is a bijection because it is the composition of two bijection). Define an atlas by

$$\mathcal{A} = \{ (U_g, \phi_g) \mid g \in G \}.$$

These U_g cover G. We will show that whenever $U_g \cap U_h \neq \emptyset$ the transition map $\phi_h^{-1}\phi_g$: $U_g \cap U_h \to U_g \cap U_h$ is smooth. For this, first note that

$$\phi_h \phi_g^{-1} = \phi \circ L_{h^{-1}} \ (\phi \circ L_{g^{-1}})^{-1} = \phi \circ L_{h^{-1}} \circ L_g \circ \phi^{-1} = \phi \circ L_{h^{-1}g} \circ \phi^{-1}.$$

This looks smooth, but be careful: we only know that L_g is smooth for $g \in U$. To deal with this problem, fix $x \in U_g \cap U_h$. Since $x \in U_h = L_h U$ we have $h^{-1}x \in U$, so $L_{h^{-1}x}$ is smooth by the hypothesis. Similarly, since $x \in U_g$ we have $g^{-1}x \in U$, so $L_{g^{-1}x}$ is smooth and hence so is its inverse. Therefore

$$L_{h^{-1}g} = L_{(h^{-1}x)(x^{-1}g)} = L_{h^{-1}x} \circ \left(L_{g^{-1}x}\right)^{-1}$$

is smooth. This shows that all transition maps are smooth, so \mathcal{A} defines a differentiable structure on G.

(c) One should also note that the assumption that G is a topological Lie group means that it is a topological manifold and hence, with out definitions, it is a metric space.

Homework 4 Comments

Scoring: Total 23 points	Problem	Points
0 1	1	4
	2	3
	3	2
	4	2
	5	3
	6	4 (2 each)
	7	$\begin{array}{l} 4 \ (2 \ \text{each}) \\ 2+(3 \ \text{bonus points}) \end{array}$

Common mistakes (by Problem number):

1. The basic idea is to choose a path $\sigma : [0,1] \to M$ from p to q, and extend the tangent vector field along the path to a vector field on all of M. One must use a cutoff function (or a partition of unity) to make the extended vector field *compactly supported*. The flow that it generates is then complete (by Theorem 9.16 Lee).

A complete flow is needed to ensure that Φ_t is defined for all t, and that its domain is all of M; in particular, is a diffeomorphism for t = 1. For vector fields that are not compactly supported, one knows only that the diffeomorphism is globally defined only in a small neighborhood of t = 0.

2(b). One common mistake is that the target space should be fixed when defining a homotopy. In particular, for maps $S^1 \to S^n$, each intermediate map $f_t = F(t, \cdot)$ must be a map into S^n .

Another mistake is that in order to use stereographic projection from the north pole N, one need to ensure $N \notin f(S^1)$. This can be done by a rotation, provided that there is *some* point $p \notin f(S^1)$. This is basically obvious, and I gave full credit if you just assumed it.

Here is a proof assuming that f is C^1 : If $(df)_x = 0$ for all $x \in S^1$, then f is a constant map, so of course there is a $p \notin f(S^1)$. Otherwise, fix x with $(df)_x \neq 0$. By the local immersion theorem there is a neighborhood $U = (x - \varepsilon, x + \varepsilon)$ of x and coordinates around p such that f(t) = (t, 0, ..., 0) for $t \in U$.

Remark. Even assuming that f is only continuous, one can first homotope f to a nonsurjective map, see Proposition 1.14 in A. Hatcher's book for a proof. The basic idea: for $x \in S^2$, let $B \subset S^2$ be a small open ball centered at x. Then $f^{-1}(B)$ is a union of intervals in (0, 1) and $f^{-1}(x)$ is finite, so there are finitely many intervals in $f^{-1}(B)$ containing x. For each of these

intervals push the image to the boundary of B. In this way we homotope f to a new map which avoid x in its image.

4. O(n) is closed simply because $O(n) = F^{-1}(I)$, where $F(A) = AA^T$ continuous, and I as a single point is compact. The Regular Preimage Theorem is not needed.

Alan Zhe Zhang