Some HW4 solutions

4. Identify Mat, = {n x n real matrices} with R"* and define ® : Mat, — Mat, by o(Aij) =
(AAT);; = >_; AijAij. Then @ is continuous (it is a quadratic polynomiall), so O(n) = d-1(1d.)

is closed. Furthermore, for each A € O(n), we have } A% =150 |A|? = > i A7, = n. Thus

O(n) is closed and bounded in R™, so compact.

5. If A € T;O(n) there is a path B(t) in O(n) with B(0) = I and B(0) = A satisfies BT (t)B(t) = I.
Applying % and evaluating at t = 0 gives 0 = BT(0) - I + 1 - BT(0) = AT + A, so A is skew-
symmetric. Thus T7O0(n) C o(n) = {n x n skew-symmetric matrices}. Conversely, if A € o(n),
then B(t) = ' = I +tA+ §t2A* + - satisfies B(0) = I, B(0) = A and

BT(t)B(t) = etAT et = emtAgtA = T

Consequently, B(t) lies in O(n) for all ¢ and hence A € T;O(n). Therefore T;0(n) = o(n).

6. (a) First, U(n) is a group: if A, B € U(n) then (i) (AB)*(AB) = B*A*AB = B*B = I and
({A*A=] = A 1=A" = A1)y =A4"=4 = (A1)*A! =1. Thus AB € U(n)
and A=t € U(n).

Let H(n) = {n x n cx. matrices| A* = A} be the vector space of hermitian matrices and
define ® : C*° — H(n) by ®(A) = A*A. This is smooth (it is quadratic in the entries of A),
®~1(Id) = U(n), and the image lies in H(n) since (A*A)* = A*A** = A*A. One shows

d® 4 is onto

exactly as was done in class for O(n) with AT replaced everywhere by A*. Hence U(n) is
an immersed submanifold of C". Finally, the group operations are smooth because they are
restrictions of the smooth group operations of GL(n,C) to the submanifold U(n).

(b) Repeating Problem 5 above, with AT replaced everywhere by A*, shows that T;U(n) is the
space u(n) = {n x n cx. matrices | A* = —A} of skew-hermitian matrices.

Alternatively, one can show T7U(n) C u(n) and then use a dimension count. For this, note that
if A= B+ Cithen A* = A iff B is symmetric and C' is skew-symmetric. Hence

1 -1
dim H(n) = n(n2+ ) i n(n2 ) —n?  and similarly dimu(n) = n2.

7. (a) Foranyx,g,h € Gwehave LyLy(x) = Ly(hx) = ghx = Lgp(x). In particular, LyL,-1(x) =
xand Ly-1Lg(x) = x. Thus LyLy = Ly, and Ly is a diffeomorphism with inverse L,-1.
(b) By assumption there is a neighborhood U of I € G and a chart ¢ : U — V C R™ on which
the group operations are smooth. For each g € G set Uy = L,(U) and let ¢4 : Uy — V
be ¢g = ¢ o Ly—1. Then Uy is a neighborhood of g and ¢4 is a bijection because it is the
composition of two bijection). Define an atlas by

A = {(Uy 9y)lg € G

These U, cover G. We will show that whenever U, N Uy, #  the transition map ¢, '¢, :
Uy, NU, — Ug NUy is smooth. For this, first note that

¢h¢;1 = ¢o L (¢>0Lg71)_1 = ¢oLp-10L, op ! = ¢0Lh71go¢_1,



This looks smooth, but be careful: we only know that Ly is smooth for g € U. To deal
with this problem, fix # € U, N Uy,. Since z € U, = LU we have h™'z € U, so Lj-1, is
smooth by the hypothesis. Similarly, since x € U, we have g 'z €U, so Ly-1, is smooth
and hence so is its inverse. Therefore

—1
Ly-1g = Ln-10)(0-19) = Ln-12 0 (Lg-12)

is smooth. This shows that all transition maps are smooth, so A defines a differentiable
structure on G.

(¢) One should also note that the assumption that G is a topologicial Lie group means that it
is a topological manifold and hence, with out definitions, it is a metric space.

Homework 4 Comments

Scoring: Total 23 points Proll)lem i’oints
2 3
3 2
4 2
) 3
6 4 (2 each)
7 2+(3 bonus points)

Common mistakes (by Problem number):

1.

The basic idea is to choose a path ¢ : [0,1] — M from p to ¢, and extend the tangent vector
field along the path to a vector field on all of M. One must use a cutoff function (or a partition
of unity) to make the extended vector field compactly supported. The flow that it generates is
then complete (by Theorem 9.16 Lee).

A complete flow is needed to ensure that ®; is defined for all ¢, and that its domain is all of M;
in particular, is a diffeomorphism for ¢ = 1. For vector fields that are not compactly supported,
one knows only that the diffeomorphism is globally defined only in a small neighborhood of ¢ = 0.

. One common mistake is that the target space should be fixed when defining a homotopy. In

particular, for maps S — S, each intermediate map f; = F(t,-) must be a map into S™.

Another mistake is that in order to use stereographic projection from the north pole N, one
need to ensure N ¢ f(S'). This can be done by a rotation, provided that there is some point
p ¢ f(S1). This is basically obvious, and I gave full credit if you just assumed it.

Here is a proof assuming that f is C*: If (df), = 0 for all € S, then f is a constant map,
so of course there is a p ¢ f(S'). Otherwise, fix x with (df), # 0. By the local immersion
theorem there is a neighborhood U = (z — ¢,2 + ¢) of x and coordinates around p such that
f(t) =(¢,0,...,0) for t € U.

Remark. Even assuming that f is only continuous, one can first homotope f to a nonsurjective
map, see Proposition 1.14 in A. Hatcher’s book for a proof. The basic idea: for x € S2, let
B C S? be a small open ball centered at x. Then f~1(B) is a union of intervals in (0,1) and
f~1(x) is finite, so there are finitely many intervals in f~!(B) containing x. For each of these



intervals push the image to the boundary of B. In this way we homotope f to a new map which
avoid z in its image.

4 . O(n) is closed simply because O(n) = F~1(I), where F(A) = AAT continuous, and I as a
single point is compact. The Regular Preimage Theorem is not needed.
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