
Homework 3 Solutions

Scoring: Total 23 points Problem Points
1 4
2 4 + up to 4 points bonus
3 5
4 2
5 3
6 5

Common mistakes by Problem number:

1. Correction definitions:

(a) Given any compact subset K of X, exist N(K) 2 N+, such that for any n � N , xn /2 K.

(b) #{xn} \K < 1, for any compact subset K of X.

For definition one, notice that N depends on K, so it is incorrect to define as:
There exists a N 2 N+, such that for any n � N , and any compact subset K of X, xn /2 K.

4&6. In order to apply regular preimage theorem, we need to define an ‘appropriate’ map in the sense
that it is smooth, and has the desired level set as given in the problems.
For problem 4, define as:

F : M ⇥ R �! R
(x, y) 7�! y � f(x)

For problem 6, define as:

F : R2
�! R

(x, y) 7�! y
2
� x(x� 1)(x� a)

5. It is not true that for a proper injective immersion f : M ! N , O open implies f(O) is open
in N , not even locally. And it is easy to find counterexamples, say f : R ! R2 the inclusion as
x-axes.
In fact, we need to show that locally O open implies f(O) is open in f(M) with the topology
induced from N . In other words, we need to show that there exists an open set U in N such
that f(O) is the intersection f(M) \ U . Since locally near O, by rank theorem, the map f is a
coordinate slice, so we can choose the open set U as U = N"(f(O)), a "tubular neighborhood of
f(O), and then prove by contradiction that there exist an " such that f(M)\N"(f(O) = f(O).

Solutions

Problem 1. (a) A sequence {xn} in a topological space X converges to infinity if, for each compact
set K ⇢ X, there is an N such that xn /2 K for all n � N .

(b) Suppose that f : X ! Y is proper and xn ! 1 in X. Fix a compact set K in Y . Since f is
proper, we know f

�1(K) is compact. Hence there is an N such that xn /2 f
�1(K) 8n � N . But then

f(xn) /2 K for all n � N . This means that f(xn) ! 1 in Y .

(c) One example is f(x) = sinx, noting that f
�1(0) = {n⇡|n 2 Z} is not compact. Another is

f(x) = arctanx, noting that f�1([0,⇡/2]) = [0,1) is not compact.



Problem 2. Let S ⇢ R4 be the surface defined by the equations y = �x
2 and x

2+y
2+y+s

2+t
2 = 1.

Using the first equation to eliminate y, we can also write

S =
n
(x, y, s, t)

��� y = �x
2 and x

4 + s
2 + t

2 = 1
o
.

These equations define a function f : R4
! R2 by f(x, y, s, t) =

✓
x
2 + y

x
4 + s

2 + t
2

◆
. Then S = f

�1

✓
0
1

◆
,

and

(Df)p =

✓
2x 1 0 0
4x3 0 2s 2t

◆

for p = (x, y, s, t). The last three columns show that Df has rank 1 whenever s 6= 0 or t 6= 0. In the
remaining case s = t = 0, the condition that p 2 S implies that x = 1, and again (Df)p has rank 2.
Thus (Df)p is surjective for each p 2 S, so S is a 2-dimensional submanifold of R4 by the Level Set
Theorem.

To see that S is di↵eomorphic to S
2, let ⌃ = {(x, s, t) 2 R3

|x
4 + s

2 + t
2 = 1}. Then

g : ⌃ ! R4 by g(x, s, t) = (x,�x
2
, s, t)

is a smooth injection whose image is S. Thus S is di↵eomorphic to ⌃.
It remains to show that ⌃ is di↵eomorphic to S

3. Consider the map G : R3
! R3 by

G(x, s, t) = (x0
, s

0
, t

0) =
1p
�(x)

⇣
x, s, t

�
where �(x) = 1 + x

2(1� x
2).

The equation x
4 + s

2 + t
2 = 1 implies that |x|  1, so �(x) � 1 at each x 2 ⌃, and hence �

�1/2 is a
smooth function on S. This means that the restriction of G to ⌃ is a di↵eomorphism from ⌃ to G(⌃).
But

(x0)2 + (s0)2 + (t0)2 = �
�1(x)

�
x
2 + s

2 + t
2
�

= �
�1(x)

⇣
(1 + x

2
� x

4) + x
4 + s

2 + t
2
� 1

⌘

= 1 + �
�1(x)

�
x
4 + s

2 + t
2
� 1

�
,

so G(x, y, z) = (x0
, s

0
, t

0) lies on the unit sphere S
3
⇢ R3 if and only if (x, y, z) 2 ⌃. Thus G(⌃) = S

3.

Problem 3. Consider the level set F�1(a) of solutions of F (x, y) = x
3 + xy + y

3 = a. Then

(DF )(x,y) =
�
3x2 + y, 3y2 + x

�

has rank 1 unless 3x2 + y = 3y2 + x = 0. Solving these equations simultaneously gives two solutions
p = (0, 0) and q = (� 1

3 ,�
1
3 ). Since F (p) = 0 and F (q) = �

1
27 , the Level Set Theorem implies that

• F
�1(a) is an embedded 1-dimensional manifold (i.e. curve) for all a 6= 0,� 1

27 .

• F
�1(0) is an embedded curve except at p, and F

�1(� 1
27 ) is an embedded curve except at q.

To understand the geometry of C = F
�1(0) near p, consider C \ B(0, ") for small ". Dilate by

changing to coordinates (z, w) defined by (x, y) = ("z, "w). The equation F (x, y) = 0 becomes

0 = zw + "(z3 + w
3)

As " ! 0 this converges in the unit disk, to the set defined by zw = 0, which is the union of the two
coordinate axes. Thus C is NOT an embedded submanifold at p.

Similarly, for C 0 = F
�1(� 1

27 ), consider C
0
\B(q, "). Dilate and translate by setting x = "z�

1
3 , y =

"w �
1
3 . The equation F (x, y) = �

1
27 becomes (after some algebra)

0 = �(z2 � zw + w
2) + "(z3 + w

3).



Taking " ! 0, this converges in the unit disk to the solution of z2 � zw + w
2 = 0. This factors as

(z + ↵w)((z + ↵
�1

w) where ↵
2 + ↵ + 1 = 0, so the solution set is the union of two lines. Thus C 0 is

also NOT an embedded submanifold at q.

Problem 4. Given f : M ! R, let G be the graph G = {(x, f(x)) 2 M ⇥ R |x 2 M}. Define

F : M ⇥ R ! R by F (x, y) = (y � f(x)).

Then F is smooth and DF = (Df, 1) has rank 1 at each point (x, y). Hence G is an embedded
submanifold by the Level Set Theorem.

Problem 5. An embedding is an immersion that is a homeomorphism onto its image (giving the
image the induced topology). The hypotheses imply that f is continuous and that f�1 : f(M) ! M

is a bijection. It su�ces to show f
�1 is continuous (f is then a homeomorphism onto its image). But

g = f
�1 is continuous , g

�1(A) = f(A) is closed for every closed set A in M , i.e. if f is a closed
map. This is true by the following lemma, which also implies that the image f(M) is closed.

Lemma. A proper continuous map f : M ! N between manifolds is a closed map (i.e. images of
closed sets are closed).

Proof. Given a closed set A in M , we must show that f(A) is closed. It su�ces to show that if a
sequence yn in f(A) converges to a point y0 2 N , then y0 2 f(A). The set K = y0 [ {yn} is compact
(any sequence in K has a convergent subsequence in K) so, since f is proper, f�1(K) is compact. We
can then choose an xn 2 A\f

�1(K) with f(xn) = yn. Because K is compact and A is closed, there is
a subsequence xnk that converges to a point x0 2 A. Since f is continuous, f(xnk) ! f(x0) 2 f(A).
On the other hand, the subsequence ynk = f(xnk) converges of y0. We conclude that y0 2 A, as
required. ⇤

Problem 6. First note that Ma = {(x, y)|y2 = x(x�1)(x�a)} is the level set F�1(0) of F : R2
! R

by F (x, y) = y
2
� x(x� 1)(x� a). Then

DF = (3x2
� 2ax� 2x+ a, 2y)

has rank 1 unless 3x2
�2ax�2x+a = 0 or y = 0. But the only points on Ma with y = 0 have x = 0, 1

or a, and the first entry in DF is non-zero at (a, 0) only if a = 0, 1. Thus (DF )p is surjective except
for the cases:

a = 0, p = (0, 0), and a = 1, p = (1, 0).

By the Level Set Theorem, Ma is an embedded curve for all a 6= 0, 1, and M0 and M1 are an embedded
curves except possibly at p = (0, 0) 2 M0 and q = (1, 0) 2 M1.

• M0 is defined by y
2 = x

2(x � 1). For x near 0, x � 1 ⇡ �1, so the RHS is negative and hence
there are no solutions except (0, 0). Thus p = (0, 0) is an isolated point of M0. This means that
there is no topology that makes M0 into an immersed 1-dimensional submanifold.

• M1 is defined by y
2 = x(x�1)2. Translating coordinates by setting z = x�1, this becomes y2 =

z
2(z+1) with q = (0, 0) is (z,y) coordinates. Now the RHS is positive, so y = ±

p
z2(z + 1) ⇡ ±z

for small z. Geometrically, this is two lines crossing at q. Hence M1, with the induced topology,
is an immersion, but not an immersed or embedded 1-dimensional submanifold.


