Math 868 — Homework 3

Due Monday, Oct. 1

- 1. A map $f: M \to N$ is called *proper* if the inverse images of compact sets are compact (that is, K compact in $N \Rightarrow f^{-1}(K)$ is compact).
 - (a) Invent a precise definition for the phrase "a sequence {x_k} converges to infinity" in a topological space X.
 Your definition apply, in particular, to X = ℝⁿ, should not mention distance functions, but instead should include the phrase "for every compact subset K ⊂ X".
 - (b) Prove that if $f: X \to Y$ is proper and (with your definition) $x_k \to \infty$, then $f(x_k) \to \infty$.
 - (c) Give an example of a smooth map $f:\mathbb{R}\to\mathbb{R}$ that is not proper.
- 2. Do Problem 5-1 on page 123 in Lee.
- 3. Do Problem 5-7 on page 123 in Lee.
- 4. Use the Preimage Theorem (called the "Regular Level Set Theorem" in Lee page 106) to prove that the graph of any smooth map $f: M \to \mathbb{R}$ is a closed embedded submanifold of $M \times \mathbb{R}$.
- 5. Prove that a proper one-to-one immersion $f: M \to N$ is an embedding with closed image. (This implies that if M is compact then all immersions are embeddings.)

First observe that the hypotheses implies that $f^{-1}: f(M) \to M$ exists. It suffices to show f^{-1} is continuous. Then show

- (a) The hypotheses implies that for each $p \in M$ there is a local product chart around f(p): $P: U \times B(\epsilon) \to N$ with f(x) = P(x, 0). It suffices to show \mathcal{O} open in U implies that $f(\mathcal{O})$ is open in N.
- (b) If this fails, there is a sequence $y_n = f(x_n)$ with $x_n \notin U$ but $y_n \to y_0 \in P(\mathcal{O} \times \{0\})$. This leds to a contradiction that the map is 1-1.

A different approach (instead of doing (a) and (b)) is to use the fact that manifolds are locally compact (i.e. each point lies in a compact neighborhood) to prove that any proper map $f : M \to N$ between manifolds is *closed map*, i.e. images of closed sets are closed.

6. Do Problem 5-10 in Lee.