Math 868 - Homework 2

Due Friday, Sept. 21

1. Let $R=\{(x, y) \mid x>0\}$ be the right half-plane and let $\Phi: \mathbb{R}^{+} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ be the map $\Phi(r, \theta)=(r \cos \theta, r \sin \theta)$ that changes into polar coordinates into (x, y) coordinates. Write down $D \Phi$ and $D \Phi^{-1}$ as matrices.
2. Use the matrices you found in Problem 1 above to express the vector $V=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ in polar coordinates, i.e. as a linear combination of $\frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial r}$.
3. In class we proved that $T_{p} M$ is the set of velocity vectors at p for all paths in M through p. Use this to show:
(a) Let $\phi: S^{1} \rightarrow \mathbb{R}^{2}$ be the embedding of the unit circle and fix $p \in S^{1}$ with $\phi(p)=(a, b)$. Show that the image of $[D \phi]_{p} T_{p} S^{1}$ is the 1-dimensional subspace of R^{2} spanned by $(-b, a)$.
(b) Similarly, for the embedding $\phi: S^{2} \rightarrow \mathbb{R}^{3}$ of the unit sphere and $p \in S^{2}$, find two vectors that are a basis of $[D \phi]_{p} T_{p} S^{2}$ at a point $\phi(p)=(a, b, c)$. (This can be done by simple geometry but don't do that. Find two paths and differentiate).

The next two problems use the following definitions and fact:
(a) A topological space X is disconnected if it is the disjoint union of two non-empty sets X_{1} and X_{2}, each of which are both open and closed.
(b) X is connected if it is not disconnected.
(c) A manifold M is path-connected if for any two points $p, q \in X$ there is a smooth map $\sigma:[0,1] \rightarrow M$ with $\sigma(0)=p$ and $\sigma(1)=q$.

One can show (rather easily) that there are exactly 10 types of connected subsets of \mathbb{R} : \mathbb{R} itself, a single point $\{a\}$ and, for each $a<b$, the intervals $[a, b],(a, b),(a, b],[a, b)$, $(a, \infty),[a, \infty),(-\infty, a)$, and $(-\infty, a]$.
4. Prove that a path-connected manifold is connected. Use proof-by-contradiction.
5. (Lee, Problem 3-1) Suppose that $f: M \rightarrow N$ is a smooth map between manifolds with M connected and that $D f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is the zero map at each $p \in M$.
(a) Prove that f is locally constant, i.e. each $p \in M$ has a neighborhood U such that $f(U)$ is a single point. Use charts and the Fund. Theorem of Calculus.
(b) Prove that the image of f is a single point. Again use proof-by-contradiction.
6. If $f: M \rightarrow N$ is a diffeomorphism from an m-dimensional manifold to an n-dimensional manifold, prove that $m=n$. Hint: fix $p \in M$ and consider $(D f)_{p}$.

Brackets and Lie algebras (Lee, Chapter 8).
7. Suppose that vector fields X and Y are given in local coordinates $\left\{x^{i}\right\}$ by

$$
X=\sum_{i} X^{i} \frac{\partial}{\partial x^{i}} \quad \text { and } \quad Y=\sum_{j} Y^{j} \frac{\partial}{\partial x^{j}}
$$

where the components X^{i} and Y^{j} are functions of the $\left\{x^{i}\right\}$. Write

$$
[X, Y]=\sum Z^{k} \frac{\partial}{\partial x^{k}}
$$

Find a formula for the components Z^{k} in terms of the X^{i} and Y^{j}. (This is in the textbook, but find it on your own).
8. Do parts (a) and (b) (skip (c)) of Problem 8-16 on page 201 in Lee.
9. (Lee, Problem 8-19) Show that \mathbb{R}^{3} is a Lie algebra with $[X, Y] \stackrel{\text { def }}{=} X \times Y$. You may use the standard properties of cross product.
10. Do Problem 8-20 in Lee. Then sketch the vector field Z in the $x y$ plane.

