Math 868 - Homework 1

Due Friday, Sept. 7

For Problems 1 and 2 , let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces. The questions refer to the following two versions of the definition of continuous map:

Definition 1. A map $f: X \rightarrow Y$ is continuous if, for each convergent sequence $x_{n} \rightarrow x_{0}$ in X, the corresponding seqence $f\left(x_{n}\right)$ converges to $f\left(x_{0}\right)$ in Y.

Definition 2. $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(U)=\{x \in X \mid f(x) \in U\}$ is open for every open set U in Y.

1. Fix a point x_{0} in X. Using Definition 1, show that the function $f: X \rightarrow \mathbf{R}$ defined by $f(x)=d\left(x, x_{0}\right)$ is continuous.
2. Prove that Definition 1 is equivalent to Definition 2. Here is one way to do this:
(a) First suppose that f is continuous in the sense of Definition 2, and that $x_{n} \rightarrow x_{0}$ is a convergent sequence in X. For each $\epsilon>0$, the ball $B\left(f\left(x_{0}\right), \epsilon\right)$ in Y is open, so \ldots.
(b) Conversely, suppose that f is continuous in the sense of Definition 2. Fix an open set U in Y. Prove that $f^{-1}(U)$ is open by contradiction, as follows.

If $\mathcal{O}=f^{-1}(U)$ is not open then there is a point $p \in \mathcal{O}$ such that no ball $B(p, \epsilon)$ is contained in \mathcal{O}. Hence for each $n=1,2, \ldots$, there is a point $x_{n} \in B\left(p, \frac{1}{n}\right)$ that does not lie in $f^{-1}(U)$. Then $x_{n} \rightarrow p$ because \ldots
3. A subset $Z \subset X$ ic called closed if its complement $Z^{c}=\{x \in X \mid x \notin Z\}$ is open. Show that $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(Z)$ is closed for every closed set Z in Y. (Use (b) to show that each $x \notin f^{-1}(Z)$ lies in a ball that does not intersect $\left.f^{-1}(Z)\right)$.
4. A topological space is a set X together with a collection \mathcal{T} of subsets of X, called open sets, such that
(a) X and the empty set \emptyset are open.
(b) The union of an arbitrary collection of open sets is open.
(c) The intersection of finite collection of open sets is open.

Let (X, d) is a metric space, and let \mathcal{T} be the collection of open subsets of X as defined in class: $U \subset X$ is open if, for each $x \in U$, there is a $\delta>0$ such that the ball $B(x, \delta)$ lies in U (this is called the topology "induced by the metric"). Prove that (X, \mathcal{T}) is a topological space.

Hint: (a) holds by definition. For (b), show that $U_{1} \cap U_{2} \cap \cdots \cap U_{n}$ is open if each U_{i} is open, and for (c) show U_{α} open for all α in some index set A implies that $\bigcup_{\alpha \in A} U_{\alpha}$ is open.
5. A topological space (X, \mathcal{T}) is Hausdorff if for each pair of points $x, y \in X$ with $x \neq y$, there are open sets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$.
Prove that a metric space, with the induced topology, is Hausdorff (this can be done in 2 lines).

Definition A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is smooth or C^{∞} if its derivatives $f^{(k)}(x)$ of all orders exist. Polynomials and $f(x)=e^{x}$ are smooth, and compositions of smooth functions are smooth.
6. This problem gives the steps for constructing a " C^{∞} bump function". Pages 49-51 in Lee's book describe a similar - but not identical - construction.
(a) An extremely useful function $f: \mathbf{R} \rightarrow \mathbf{R}$ is

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Sketch the graph of f and prove that f is smooth at each $x \neq 0$ (Note: $\phi(x)$ smooth $\Rightarrow e^{\phi(x)}$ smooth.)
(b) Read Lee's proof (pages 49-50 in the textbook) that f is also smooth at $x=0$. No need to write anything on this!
(c) Fix $0<a<b$. Sketch the graph of $g(x)=f(x-a) f(b-x)$ and show that g is a smooth function, positive on the interval (a, b) and 0 elsewhere.
(d) Sketch the graph of

$$
h(x)=\frac{\int_{-\infty}^{x} g d x}{\int_{-\infty}^{\infty} g d x}
$$

This is a smooth function satisfying $h(x)=0$ for $x<a, h(x)=1$ for $x>b$ and $0<h(x)<1$ for all $x \in(a, b)$ (no proof needed here).
(e) Now construct a smooth "bump function" $\beta(x)$ on \mathbf{R}^{n} that equals 1 on the ball $B(0, a)$, is zero outside the ball $B(0, b)$ and is strictly between 0 and 1 at the intermediate points.

Definition A map $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a diffeomorphism if it is $1-1$, onto, smooth and f^{-1} is also smooth (equivalently, if f is a homeomorphism such that f and f^{-1} are smooth).
7. Prove that a smooth bijective map between manifolds need not be a diffeomorphism. In fact, show that following are examples.
(a) $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(x)=x^{3}$.
(b) $g:[0,2 \pi) \rightarrow S^{1}$ by $g(x)=e^{i x}$ (regarding S^{1} as the unit circle in the complex plane). Sketch, and show that ϕ^{-1} is defined but is not even continuous.
8. Let S^{n} be the unit sphere in \mathbf{R}^{n+1}, with its north and south poles $n=(0,0, \ldots, 1)$ and $s=$ $(0,0, \ldots,-1)$. Stereographic projection from the north pole is the map $\sigma_{n}: S^{n} \backslash\{n\} \rightarrow \mathbf{R}^{n}$ by

$$
\sigma_{n}\left(x^{1}, \ldots, x^{n+1}\right)=\frac{1}{1-x^{n+1}}\left(x^{1}, \ldots, x^{n}\right)
$$

σ_{s} is given by the similar formula with $1-x^{n+1}$ replaced by $1+x^{n+1}$. It is straightforward to check that

$$
\sigma_{n}^{-1}\left(y^{1}, \ldots, y^{n}\right)=\frac{1}{1+|y|^{2}}\left(2 y^{1}, \ldots, 2 y^{n},|y|^{2}-1\right)
$$

Show that $\left\{\sigma_{n}, \sigma_{s}\right\}$ is a atlas for a smooth structure on S^{n}, as follows:
(a) What is the domain and range of $\sigma_{s} \circ \sigma_{n}^{-1}$?
(b) Write down a formula for $\sigma_{s} \circ \sigma_{n}^{-1}$ and conclude (by inspection) that it is smooth.
(c) Similarly write the formula for $\sigma_{n} \circ \sigma_{s}^{-1}$ and conclude that it is smooth.

