Math 868 — Homework 1

Due Friday, Sept. 7

For Problems 1 and 2, let (X, d) and (Y, d') be metric spaces. The questions refer to the following two versions of the definition of continuous map:

Definition 1. A map $f: X \to Y$ is *continuous* if, for each convergent sequence $x_n \to x_0$ in X, the corresponding sequence $f(x_n)$ converges to $f(x_0)$ in Y.

Definition 2. $f: X \to Y$ is continuous if and only if $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$ is open for every open set U in Y.

- 1. Fix a point x_0 in X. Using Definition 1, show that the function $f : X \to \mathbf{R}$ defined by $f(x) = d(x, x_0)$ is continuous.
- 2. Prove that Definition 1 is equivalent to Definition 2. Here is one way to do this:
 - (a) First suppose that f is continuous in the sense of Definition 2, and that $x_n \to x_0$ is a convergent sequence in X. For each $\epsilon > 0$, the ball $B(f(x_0), \epsilon)$ in Y is open, so
 - (b) Conversely, suppose that f is continuous in the sense of Definition 2. Fix an open set U in Y. Prove that $f^{-1}(U)$ is open by contradiction, as follows.

If $\mathcal{O} = f^{-1}(U)$ is not open then there is a point $p \in \mathcal{O}$ such that no ball $B(p, \epsilon)$ is contained in \mathcal{O} . Hence for each $n = 1, 2, \ldots$, there is a point $x_n \in B(p, \frac{1}{n})$ that does not lie in $f^{-1}(U)$. Then $x_n \to p$ because \ldots

- 3. A subset $Z \subset X$ ic called *closed* if its complement $Z^c = \{x \in X | x \notin Z\}$ is open. Show that $f: X \to Y$ is continuous if and only if $f^{-1}(Z)$ is closed for every closed set Z in Y. (Use (b) to show that each $x \notin f^{-1}(Z)$ lies in a ball that does not intersect $f^{-1}(Z)$).
- 4. A topological space is a set X together with a collection \mathcal{T} of subsets of X, called open sets, such that
 - (a) X and the empty set \emptyset are open.
 - (b) The union of an arbitrary collection of open sets is open.
 - (c) The intersection of finite collection of open sets is open.

Let (X, d) is a metric space, and let \mathcal{T} be the collection of open subsets of X as defined in class: $U \subset X$ is open if, for each $x \in U$, there is a $\delta > 0$ such that the ball $B(x, \delta)$ lies in U (this is called the topology "induced by the metric"). Prove that (X, \mathcal{T}) is a topological space.

Hint: (a) holds by definition. For (b), show that $U_1 \cap U_2 \cap \cdots \cap U_n$ is open if each U_i is open, and for (c) show U_{α} open for all α in some index set A implies that $\bigcup_{\alpha \in A} U_{\alpha}$ is open.

5. A topological space (X, \mathcal{T}) is *Hausdorff* if for each pair of points $x, y \in X$ with $x \neq y$, there are open sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Prove that a metric space, with the induced topology, is Hausdorff (this can be done in 2 lines).

Definition A function $f : \mathbf{R} \to \mathbf{R}$ is *smooth* or C^{∞} if its derivatives $f^{(k)}(x)$ of all orders exist. Polynomials and $f(x) = e^x$ are smooth, and compositions of smooth functions are smooth.

- 6. This problem gives the steps for constructing a " C^{∞} bump function". Pages 49-51 in Lee's book describe a similar but not identical construction.
 - (a) An extremely useful function $f : \mathbf{R} \to \mathbf{R}$ is

$$f(x) = \begin{cases} e^{-1/x^2} & x > 0\\ 0 & x \le 0 \end{cases}$$

Sketch the graph of f and prove that f is smooth at each $x \neq 0$ (*Note:* $\phi(x)$ smooth $\Rightarrow e^{\phi(x)}$ smooth.)

- (b) Read Lee's proof (pages 49-50 in the textbook) that f is also smooth at x = 0. No need to write anything on this!
- (c) Fix 0 < a < b. Sketch the graph of g(x) = f(x-a)f(b-x) and show that g is a smooth function, positive on the interval (a, b) and 0 elsewhere.
- (d) Sketch the graph of

$$h(x) = \frac{\int_{-\infty}^{x} g \, dx}{\int_{-\infty}^{\infty} g \, dx}$$

This is a smooth function satisfying h(x) = 0 for x < a, h(x) = 1 for x > b and 0 < h(x) < 1 for all $x \in (a, b)$ (no proof needed here).

(e) Now construct a smooth "bump function" $\beta(x)$ on \mathbb{R}^n that equals 1 on the ball B(0, a), is zero outside the ball B(0, b) and is strictly between 0 and 1 at the intermediate points.

Definition A map $f : \mathbf{R}^n \to \mathbf{R}^n$ is a *diffeomorphism* if it is 1-1, onto, smooth and f^{-1} is also smooth (equivalently, if f is a homeomorphism such that f and f^{-1} are smooth).

- 7. Prove that a smooth bijective map between manifolds need not be a diffeomorphism. In fact, show that following are examples.
 - (a) $f : \mathbf{R} \to \mathbf{R}$ by $f(x) = x^3$.
 - (b) $g: [0, 2\pi) \to S^1$ by $g(x) = e^{ix}$ (regarding S^1 as the unit circle in the complex plane). Sketch, and show that ϕ^{-1} is defined but is not even continuous.
- 8. Let S^n be the unit sphere in \mathbf{R}^{n+1} , with its north and south poles $n = (0, 0, \dots, 1)$ and $s = (0, 0, \dots, -1)$. Stereographic projection from the north pole is the map $\sigma_n : S^n \setminus \{n\} \to \mathbf{R}^n$ by

$$\sigma_n(x^1, \dots, x^{n+1}) = \frac{1}{1 - x^{n+1}} \left(x^1, \dots, x^n \right)$$

 σ_s is given by the similar formula with $1 - x^{n+1}$ replaced by $1 + x^{n+1}$. It is straightforward to check that

$$\sigma_n^{-1}(y^1,\ldots,y^n) = \frac{1}{1+|y|^2} \left(2y^1,\ldots,2y^n,|y|^2-1 \right)$$

Show that $\{\sigma_n, \sigma_s\}$ is a atlas for a smooth structure on S^n , as follows:

- (a) What is the domain and range of $\sigma_s \circ \sigma_n^{-1}$?
- (b) Write down a formula for $\sigma_s \circ \sigma_n^{-1}$ and conclude (by inspection) that it is smooth.
- (c) Similarly write the formula for $\sigma_n \circ \sigma_s^{-1}$ and conclude that it is smooth.