Math 868 - Final Exam

In this exam, all manifolds, maps, vector fields, etc. are smooth.

Part 1. Complete $\mathbf{5}$ of the following $\mathbf{7}$ sentences to make a precise definition (5 points each).

1. A map $f: X \rightarrow Y$ between manifolds is a submersion if $D F_{p}: T_{p} X \rightarrow T_{f(p)} Y$ is surjective for all $p \in X$.
2. A map $\pi: V \rightarrow M$ between manifolds is a (locally trivial) vector bundle of rank k if each $p \in M$ has a neighborhood U such that \exists a diffeomorphism ϕ satisfying
(i) $\pi_{1} \circ \phi=\pi$, where $\pi_{1}: U \times \mathbf{R}^{k} \rightarrow U$ is the projection onto the first factor, and
(ii) The restriction of ϕ to each fiber $\pi^{-1}(x), x \in U$, is linear.
3. Let X and Y be vector fields on M with flows $X \leftrightarrow \phi_{t}$ and $Y \leftrightarrow \psi_{t}$. The Lie Derivative of Y in the direction X is the vector field defined by

$$
\mathcal{L}_{X} Y=\left.\frac{d}{d t}\left(\phi_{-t}\right)_{*} Y\right|_{t=0} \quad \text { or } \quad \lim _{t \rightarrow 0} \frac{\left(\phi_{-t}\right)_{*} Y-Y}{t} \quad \text { or } \quad \lim _{t \rightarrow 0} \frac{Y-\left(\phi_{t}\right)_{*} Y}{t} .
$$

4. A orientation form for a manifold M is
an n-form σ on M (where $n=\operatorname{dim} M$) that vanishes nowhere (i.e. $\sigma(x) \neq 0 \quad \forall x \in M$).
5. Two maps $f, g: M \rightarrow N$ are homotopic if there is a continuous map $H:[0,1] \times M \rightarrow N$ such that $H(0, x)=f(x)$ and $H(1, x)=g(x)$ for all $x \in M$.
6. The Poincaré Lemma states that if a domain $\Omega \subset \mathbf{R}^{n}$ is
contractible, then every closed p-form, $p>0$, is exact (or, equivalently, then $H^{p}(\Omega)=0 \forall p>0$.)
7. Let (M, g) be an n-dimensional compact Riemannian manifold with volume form $d v o l_{g}$.

The Hodge star operator is the linear map $*: \Omega_{M}^{p} \rightarrow \Omega_{M}^{n-p}$ defined by $\omega \mapsto * \omega$, where $* \omega$ is the unique element of Ω_{M}^{n-p} such that

$$
\eta \wedge * \omega=\langle\eta, \omega\rangle \text { dvol }_{g} \quad \forall \eta \in \Omega_{M}^{p} .
$$

Part 2. Do all 4 of the following Short Problems (8 points each).

1. Give a precise definition of a smooth manifold.

A smooth manifold M of dimension n is a metrizable (or second countable, Hausdorff) space with a maximal collection of maps ("charts") $\left\{\phi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha} \mid \alpha \in A\right\}$ indexed by a set A that satisfy:
(a) $U_{\alpha} \subset M$ and $V_{\alpha} \subset \mathbf{R}^{n}$ are open,
(b) $\left\{U_{\alpha}\right\}$ is a cover of M.
(c) Each ϕ_{α} is a homeomorphism.
(d) If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ is a diffeomorphism.

Caution: In (c), one can't say ϕ_{α} is a diffeomorphism because at that point, U_{α} is only a topological space.
2. Consider \mathbf{R}^{4} with coordinates (w, x, y, z). Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{4}$ be defined by $f(u, v)=\left(u^{2} v, v, u, v^{3}\right)$. Define a 2 -form on \mathbf{R}^{4} by

$$
\alpha=w^{2} d y \wedge d z+y^{3} d y \wedge d w-2 y w d z \wedge d w
$$

(a) Compute $f^{*} \alpha$. Noting that $d w=d\left(u^{2} v\right)=2 u v d u+u^{2} d v, d x=d v, d y=d u$, and $d z=d\left(v^{3}\right)=$ $3 v^{2} d v$, and that $d u \wedge d u=0$ and $d v \wedge d v=0$, one calculates

$$
\begin{aligned}
f^{*} \alpha & =\left(u^{2} v\right)^{2} d u \wedge 3 v^{2} d v+u^{3} d u \wedge\left(24 \sigma d u+u^{2} d v\right)-\left(2 u^{3} v\right)\left(3 v^{2} d v\right) \wedge\left(2 u v d u+\psi^{2} d v\right) \\
& =\left(3 u^{4} v^{4}+u^{3}\right) d u \wedge d v-12 u^{4} v^{4} d v \wedge d u \\
& =\left(15 u^{4} v^{4}+u^{5}\right) d u \wedge d v .
\end{aligned}
$$

(b) Find a 1-form β on \mathbf{R}^{4} such that $\alpha=d \beta$. There are many possible answers, including

$$
\beta=w^{2} y d z+\frac{y^{4}}{4} d w \quad \text { and } \quad \beta=w^{2} y d z-y^{3} w d y .
$$

3. (a) Suppose that $f: M \rightarrow N$ is a diffeomorphism between manifolds. Prove that at each point $p, D f_{p}$ is an isomorphism of the tangent spaces.

By assumption, there is a smooth inverse map $g: N \rightarrow M$ with $f \circ g=I d$. and $g \circ f=I d$. By the Composite Function Theorem,

$$
D(f \circ g)=D f \circ D g=D(I d)=I d \quad \text { and similarly } \quad D(g \circ f)=I d .
$$

Hence $D f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is a (linear) isomorphism of vector spaces.
(b) Prove that \mathbf{R}^{k} is not diffeomorphic to \mathbf{R}^{n} if $k \neq n$.

Fix $p \in \mathbf{R}^{k}$. If $\phi: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ is a diffeomorphism, by by (a) $D \phi_{p}: T_{p} \mathbf{R}^{k} \rightarrow T_{f(p)} \mathbf{R}^{n}$ is a vector space isomorphism. Hence $\operatorname{dim} T_{p} \mathbf{R}^{k}=k$ is equal to $\operatorname{dim} T_{f(p)} \mathbf{R}^{n}=n$.
4. (a) Define the DeRham cohomology group $H^{p}(M)$.

$$
H^{p}(M)=\frac{\operatorname{ker} d: \Omega_{M}^{p} \rightarrow \Omega_{M}^{p+1}}{i m d: \Omega_{M}^{p-1} \rightarrow \Omega_{M}^{p}}=\frac{\{\text { closed } p \text {-forms }\}}{\{\text { exact } p \text {-forms }\}}
$$

(b) Prove that a map $f: M \rightarrow N$ between manifolds induces a map $f^{*}: H^{p}(N) \rightarrow H^{p}(M)$ for each p.

Let $A^{p}(M) \subset \Omega_{M}^{p}$ denote the vector subspace of closed p-froms. For each $\omega \in A^{p}(N)$, the pullback $f^{*} \omega$ is closed (since $d\left(f^{*} \omega\right)=f^{*} d \omega=0$), so defined a class $\left[f^{*} \omega\right]$ in $H^{p}(M)$. Define a map

$$
L: A^{p}(N) \rightarrow H^{p}(M)
$$

by $L(\omega)=\left[f^{*} \omega\right]$. This map is linear because

$$
L\left(a \omega+b \omega^{\prime}\right)=\left[f^{*}\left(a \omega+b \omega^{\prime}\right)\right]=\left[a f^{*} \omega+b f^{*} \omega^{\prime}\right]=a\left[f^{*} \omega\right]+b\left[f^{*} \omega^{\prime}\right] .
$$

It is also constant on equivalence classes in $A^{p}(N)$ because

$$
L(\omega+d \eta)=\left[f^{*}(\omega+d \eta)\right]=\left[f^{*} \omega\right]+\left[f^{*} d \eta\right]=\left[f^{*} \omega\right]+\left[d f^{*} \eta\right]=\left[f^{*} \omega\right] .
$$

Hence L induces a linear map $H^{p}(N) \rightarrow H^{p}(M)$.

Part 3. Do 4 of the remaining 7 longer problems (11 points each).
5. Use the Preimage Theorem (called the "Regular Level Set Theorem"' in Lee) to prove that the graph of any smooth map $f: M \rightarrow \mathbf{R}$ between manifolds is a closed embedded submanifold of $M \times \mathbf{R}$.

Define $F: M \times \mathbf{R} \rightarrow \mathbf{R}$ by $F(x, t)=f(x)-t$. Then $f^{-1}(0)$ is the graph $G_{f}=\{(x, t) \in M \times \mathbf{R} \mid t=f(x)\}$, F is smooth (it is the sum of two smooth functions), and $D F_{p}$ is surjective at each $p=(x, t) \in G_{f}$ because $D F_{p}\left(\frac{\partial}{\partial t}\right)=-\frac{\partial}{\partial t}$. Hence G_{f} is a closed embedded submanifold by the Regular Value Theorem.
6. Let S be the 2 -manifold with boundary consisting of the points of the "monkey saddle" graph $\left\{(x, y, z) \mid y^{3}-3 x^{2} y-z=0\right\}$ whose (x, y) coordinates lie in the ellipsoidal region

$$
E=\left\{(x, y) \in \mathbf{R}^{2} \left\lvert\, x^{2}+\left(\frac{y}{2}\right)^{2} \leq 1\right.\right\} .
$$

(a) Write down a diffeomorphism $f: D \rightarrow S$, where D is the unit disk in \mathbf{R}^{2} with coordinates (u, v).

Set $f(u, v)=\left(u, 2 v, 8 v^{3}-6 u^{2} v\right)$. This is surjective because S is the graph $z=y^{3}-3 x^{2} y$ over E, and is injective with inverse $f^{-1}(x, y, z)=(x, y / 2)$. Thus f is a diffeomeorphism $\left(f\right.$ and f^{-1} are polynomials, so are smooth).
(b) Orient S with the orientation form $\sigma=d x \wedge d y$, and D with the orientation form $d u \wedge d v$. Is your map f positively oriented? $f^{*} \sigma=d u \wedge d(2 v)=2 d u \wedge d v$. Since $2>0, f$ is positively oriented.
(c) Compute $\int_{S} x d x \wedge d y+y^{2} d x \wedge d z=\int_{S} x d x \wedge d y+y^{2} d x \wedge d z=\int_{D} u(d u \wedge 2 d v)+(2 v)^{2}(d u \wedge$ $\left.d\left(8 v^{3}-6 u^{2} v\right)\right)$. Noting that $\left.d\left(8 v^{3}-6 u^{2} v\right)\right)=24 v^{2} d v-12 u v d u-6 u^{2} d v$ and $d u \wedge d u=0$, this reduces
to $\int_{D} 2\left(u+48 v^{4}-12 u^{2} v^{2}\right) d u \wedge d v$. Note that $\int_{D} u=0$ because u is an odd function. Now switch to polar coordinates by $u=r \cos \theta, v=r \sin \theta$ and $d u \wedge d v=r d r d \theta$ (since f is positively oriented):

$$
=2 \cdot 12 \int_{0}^{2 \pi} \int_{0}^{1} r^{4}\left(4 \sin ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta\right) r d r d \theta=\frac{24}{6} \int_{0}^{2 \pi} 4 \sin ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta d \theta
$$

Integrating by parts using $\left(\sin ^{3} \theta \cos \theta\right)^{\prime}=-\sin ^{4} \theta+3 \sin ^{2} \theta \cos ^{2} \theta$, this becomes

$$
4 \int_{0}^{2 \pi} 11 \sin ^{2} \theta \cos ^{2} \theta d \theta=\int_{0}^{2 \pi} 11(2 \sin \theta \cos \theta)^{2} d \theta=11 \int_{0}^{2 \pi} \sin ^{2} 2 \theta d \theta=11 \pi
$$

7. This problem is about the definition of vector fields as derivations.
(a) Complete the definition: A vector field is a linear map $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $X(f g)=X f \cdot g+f \cdot X g \quad$ for all $f, g \in C^{\infty}(M)$.

Now let $\left\{x^{i}\right\}$ be local coordinates on an open set $U \subset M$.
(b) Use your answer to (a) to show that $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0$ for all $i, j, \frac{\partial}{\partial x^{i}}$ is the vector field defined by $\frac{\partial}{\partial x^{i}}(f)=\frac{\partial f}{\partial x^{i}}$. Then $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right] f=\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}}(f)-\frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}}(f)=\frac{\partial f}{\partial x^{i} \partial x^{j}}-\frac{\partial f}{\partial x^{j} \partial x^{i}}=0$.
(c) Show that if $X=\sum X^{i} \frac{\partial}{\partial x^{i}}$ and $Y=\sum Y^{i} \frac{\partial}{\partial x^{i}}$ then $[X, Y]=\sum\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}$.

Write $\frac{\partial}{\partial x^{i}}$, as ∂_{i}. Then $\sum_{i, j}\left[X^{i} \partial_{i}, Y^{j} \partial_{j}\right] f$ is $X^{i} \partial_{i} Y^{j} \partial_{j} f+X^{i} Y^{j} \partial_{i} \partial_{j} f-Y^{j} \partial_{j} X^{i} \partial_{i} f-Y^{j} X^{i} \partial_{j} \partial_{i} f$. Omitting the f, changing indices on the thrid term and using (a), this becomes

$$
\left(X^{i} \partial_{i} Y^{j} \partial_{j}-Y^{j} \partial_{i} X^{i}\right) \partial_{j}+X^{i} Y^{j}\left[\partial_{i}, \partial_{j}\right]=\left(X^{i} \partial_{i} Y^{j}-\partial_{j} Y^{j} \partial_{i} X^{i}\right) \partial_{j}
$$

8. Let ω be an n-form on a compact n-dimensional manifold M with orientation form σ.
(a) Write down a precise definition of the integral $\int_{M} \omega$.

For an n-form η compactly supported on an open set $U \subset \mathbf{R}^{n}$, write $\eta=f d x^{1} \wedge \cdots \wedge d x^{n}$ for some function f, and define $\int_{U} \omega$ to be the ordinary integral $\int f$. This is well-defined up to sign by the change-of-variables formula from calculus.
In general, choose smooth diffeomorphisms $\phi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}$ into M, with $U_{\alpha} \subset \mathbf{R}^{n}$ and $\left\{V_{\alpha}\right\}$ covering M. Let $\left\{\rho_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{V_{\alpha}\right\}$. Define

$$
\int_{M} \omega \text { to be } \sum_{\alpha} \int_{U_{\alpha}} \pm \phi_{\alpha}^{*}\left(\rho_{\alpha} \omega\right)
$$

where, for each α, the sign \pm are determined by orientation of ϕ_{α}.
(b) Describe how to determine the sign.

For each $\alpha, \phi_{\alpha}^{*} \sigma$ is an n-form on a domain in \mathbf{R}^{n}, so can be written $\phi_{\alpha}^{*}=g d x^{1} \wedge \cdots \wedge d x^{n}$, and g vanishes nowhere on U_{α} because ϕ_{α} is a diffeomorphism. Then the sign is + if $g>0$, and is - is $g<0$ on U_{α}.
9. (a) What is the DeRham cohomology of the circle S^{1} ? (do not prove).

$$
H^{p}\left(S^{1}\right)= \begin{cases}\mathbf{R} & p=0 \\ \mathbf{R} & p=1 \\ 0 & p \neq 0,1\end{cases}
$$

Use this and the Mayer-Vietoris sequence to find $H^{*}\left(S^{2}\right)$, as follows:
(b) Draw a picture showing your choice of U and V. Take U to be the northern $3 / 4$ of S^{2} and V to be the southern $3 / 4$ (or $U=S^{2} \backslash$ \{south pole $\}$ and $V=S^{2} \backslash\{$ north pole $\}$).
(d) Write down the Mayer-Vietoris sequence relating $H^{*}(U), H^{*}(V)$ and $H^{*}(U \cap V)$.

$$
\cdots \rightarrow H^{p}\left(S^{2}\right) \rightarrow H^{p}(U) \oplus H^{p}(V) \rightarrow H^{p}(U \cap V) \rightarrow H^{p+1}\left(S^{2}\right) \rightarrow \cdots
$$

(c) From (a) and the axioms of cohomology, what are $H^{*}(U), H^{*}(V)$ and $H^{*}(U \cap V)$?

Note that U and V are contractible, and that $U \cap V$ retracts to the equator. Hence by the Homotopy axiom and the Point axiom

$$
H^{p}(U)=H^{p}(V)=H^{p}(\text { point })= \begin{cases}\mathbf{R} & p=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

and $H^{*}(U \cap V)=H^{*}\left(S^{1}\right)$ is an in (a).
(d) Use the resulting long exact sequence to find $H^{*}\left(S^{2}\right)$.
S^{2} is connected, so $H^{0}\left(S^{2}\right)=\mathbf{R}$. The Mayer-Vietoris sequence above is, in part,
$0 \rightarrow H^{0}\left(S^{2}\right) \rightarrow H^{0}(U) \oplus H^{0}(V) \rightarrow H^{0}(U \cap V) \rightarrow H^{1}\left(S^{2}\right) \rightarrow H^{1}(U) \oplus H^{1}(V) \rightarrow H^{1}(U \cap V) \rightarrow H^{2}\left(S^{2}\right) \rightarrow 0$.
Using (c) this reduces to

$$
0 \rightarrow \mathbf{R} \rightarrow \mathbf{R} \oplus \mathbf{R} \rightarrow \mathbf{R} \rightarrow H^{1}\left(S^{2}\right) \rightarrow 0 \oplus 0 \rightarrow \mathbf{R} \rightarrow H^{2}\left(S^{2}\right) \rightarrow 0
$$

In particular,
(i) $0 \rightarrow \mathbf{R} \rightarrow H^{2}\left(S^{2}\right) \rightarrow 0$ is exact $\Longrightarrow H^{1} 2\left(S^{2}\right)=\mathbf{R}$.
(ii) For $p>2,0 \rightarrow H^{p}\left(S^{2}\right) \rightarrow 0 \Longrightarrow H^{p}\left(S^{2}\right)=0$.
(iii) Counting dimensions in the exact sequence $0 \rightarrow \mathbf{R} \rightarrow \mathbf{R} \oplus \mathbf{R} \rightarrow \mathbf{R} \rightarrow H^{1}\left(S^{2}\right) \rightarrow 0$ shows that $H^{1}\left(S^{2}\right)=0$.
Thus

$$
H^{p}\left(S^{2}\right)= \begin{cases}\mathbf{R} & p=0 \\ \mathbf{R} & p=2 \\ 0 & p \neq 0,2\end{cases}
$$

10. (a) Complete the definition: M be a smooth n-manifold with boundary if... See the definition in Lee.
(b) Now suppose that M is a smooth n-manifold with boundary. Show that ∂M is a smooth ($n-1$)-manifold without boundary and that the inclusion $\partial M \rightarrow M$ is a smooth embedding. See the definition in Lee.
11. The exterior derivative d is a linear map $d: \Omega_{M}^{p} \rightarrow \Omega_{M}^{p+1}$ for each $p \geq 0$ such that
(i) $d^{2}=\underline{0}$
(ii) For $f \in C^{\infty}(M)$, the 1-form $d f$ is defined by $d f(X)=\underline{X f}$ for all vector fields X.
(iii) $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{p} \omega \wedge d \eta \quad \forall \omega \in \Omega_{M}^{p}, \eta \in \Omega_{M}^{q}$.

Prove that these properties determine d uniquely, as follows:
(a) Fill in the blanks above.
(b) Show that these properties determine $d \omega$ for a 1-form ω. Hint: write ω in local coordinates.

First suppose that ω has support in one coordinate chart $\left\{x^{i}\right\}$. For each i, define a function ω_{i} by $\omega_{i}=\omega\left(\frac{\partial}{\partial x^{i}}\right)$. Then $\omega=\sum w_{i} d x^{i}$ as follows: for any vector field $X=\sum X^{j} \frac{\partial}{\partial x^{j}}$,

$$
\omega(X)=\sum x^{j} \omega\left(\frac{\partial}{\partial x^{j}}\right)=\sum X^{j} \omega_{j}, \text { while }\left(\sum w_{i} d x^{i}\right)(X)=\sum \sum \omega_{i} X^{j} d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\sum \omega_{j} X^{j} .
$$

Then by (i)-(iii), $d \omega=\sum d \omega_{i} \wedge d x^{i}-\omega_{i} d d x^{i}=\sum d \omega_{i} \wedge d x^{i}$; in particular, $d \omega$ is determined by (i)-(iii).
In general, let $\left\{U_{\alpha}\right\}$ be a coordinate charts that cover M with subordinate partition of unity $\left\{\rho_{\alpha}\right\}$. Then $\sum_{\alpha} \rho_{\alpha}=1$, and hence $\omega=\sum \omega_{\alpha}$ where $\omega_{\alpha}=\rho_{\alpha} \omega$ is a 1 -form supported on a coordinate chart. Then $d \omega=\sum d \omega_{\alpha}$ (by linearity), and each $d \omega_{\alpha}$ is determined by (i)-(iii) as above.
(c) Use induction to prove that these properties determine $d \omega$ for any p-form ω.

This is true for $p=0,1$ by parts (a) and (b). Assume inductively that it is true for $p-1$. Fix a p-form ω. As in (b), we can use a partition of unity to show that it suffices to assume that ω has support in a chart with coordinates x^{i}. For each i, let η_{i} be the $(p-1)$ form

$$
\eta_{i}=\iota \frac{\partial}{\partial x^{i}} \omega
$$

Then $\omega=\sum_{i} \eta_{i} \wedge d x^{i}$. Hence by (iii) and (i), $d \omega=\sum d \eta_{i} \wedge d x^{i}+0$, so $d \omega$ is well-defined and unique by the induction hypothesis.

