Math 868 — Final Exam

In this exam, all manifolds, maps, vector fields, etc. are smooth.

Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

1. A map $f: X \to Y$ between manifolds is a submersion if

 $DF_p: T_pX \to T_{f(p)}Y$ is surjective for all $p \in X$.

2. A map $\pi: V \to M$ between manifolds is a *(locally trivial) vector bundle* of rank k if

each $p \in M$ has a neighborhood U such that \exists a diffeomorphism ϕ satisfying

- (i) $\pi_1 \circ \phi = \pi$, where $\pi_1 : U \times \mathbf{R}^k \to U$ is the projection onto the first factor, and
- (ii) The restriction of ϕ to each fiber $\pi^{-1}(x), x \in U$, is linear.
- 3. Let X and Y be vector fields on M with flows $X \leftrightarrow \phi_t$ and $Y \leftrightarrow \psi_t$. The Lie Derivative of Y in the direction X is the vector field defined by

$$\mathcal{L}_X Y = \left. \frac{d}{dt} (\phi_{-t})_* Y \right|_{t=0}$$
 or $\lim_{t \to 0} \frac{(\phi_{-t})_* Y - Y}{t}$ or $\lim_{t \to 0} \frac{Y - (\phi_t)_* Y}{t}$.

4. A orientation form for a manifold M is

an *n*-form σ on M (where $n = \dim M$) that vanishes nowhere (i.e. $\sigma(x) \neq 0 \quad \forall x \in M$).

5. Two maps $f, g: M \to N$ are *homotopic* if there is a continuous map

 $H: [0,1] \times M \to N$ such that H(0,x) = f(x) and H(1,x) = g(x) for all $x \in M$.

6. The *Poincaré Lemma* states that if a domain $\Omega \subset \mathbf{R}^n$ is

contractible, then every closed p-form, p > 0, is exact (or, equivalently, then $H^p(\Omega) = 0 \forall p > 0$.)

7. Let (M, g) be an *n*-dimensional compact Riemannian manifold with volume form $dvol_g$. The Hodge star operator is the linear map $*: \Omega_M^p \to \Omega_M^{n-p}$ defined by $\omega \mapsto *\omega$, where $*\omega$ is the unique element of Ω_M^{n-p} such that

$$\eta \wedge *\omega = \langle \eta, \omega \rangle \ dvol_g \qquad \forall \eta \in \Omega^p_M.$$

Part 2. Do all 4 of the following Short Problems (8 points each).

1. Give a precise definition of a smooth manifold.

A smooth manifold M of dimension n is a metrizable (or second countable, Hausdorff) space with a maximal collection of maps ("charts") { $\phi_{\alpha} : U_{\alpha} \to V_{\alpha} \mid \alpha \in A$ } indexed by a set A that satisfy:

- (a) $U_{\alpha} \subset M$ and $V_{\alpha} \subset \mathbf{R}^n$ are open,
- (b) $\{U_{\alpha}\}$ is a cover of M.
- (c) Each ϕ_{α} is a homeomorphism.
- (d) If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ is a diffeomorphism.

Caution: In (c), one can't say ϕ_{α} is a diffeomorphism because at that point, U_{α} is only a topological space.

2. Consider \mathbf{R}^4 with coordinates (w, x, y, z). Let $f : \mathbf{R}^2 \to \mathbf{R}^4$ be defined by $f(u, v) = (u^2 v, v, u, v^3)$. Define a 2-form on \mathbf{R}^4 by

$$\alpha = w^2 \, dy \wedge dz + y^3 \, dy \wedge dw - 2yw \, dz \wedge dw.$$

(a) Compute $f^*\alpha$. Noting that $dw = d(u^2v) = 2uvdu + u^2dv$, dx = dv, dy = du, and $dz = d(v^3) = 3v^2dv$, and that $du \wedge du = 0$ and $dv \wedge dv = 0$, one calculates

$$\begin{aligned} f^*\alpha &= (u^2v)^2 \, du \wedge 3v^2 \, dv \, + \, u^3 \, du \wedge (2uv \, d\overline{u} + u^2 \, dv) - (2u^3v)(3v^2 \, dv) \wedge (2uv \, du + u^2 \, dv) \\ &= (3u^4v^4 + u^3) \, du \wedge dv \, - \, 12u^4v^4 \, dv \wedge du \\ &= (15u^4v^4 + u^5) \, du \wedge dv. \end{aligned}$$

(b) Find a 1-form β on \mathbb{R}^4 such that $\alpha = d\beta$. There are many possible answers, including

$$\beta = w^2 y \, dz + \frac{y^4}{4} \, dw$$
 and $\beta = w^2 y \, dz - y^3 w \, dy$.

3. (a) Suppose that $f: M \to N$ is a diffeomorphism between manifolds. Prove that at each point p, Df_p is an isomorphism of the tangent spaces.

By assumption, there is a smooth inverse map $g: N \to M$ with $f \circ g = Id$. and $g \circ f = Id$. By the Composite Function Theorem,

$$D(f \circ g) = Df \circ Dg = D(Id) = Id$$
 and similarly $D(g \circ f) = Id$.

Hence $Df_p: T_pM \to T_{f(p)}N$ is a (linear) isomorphism of vector spaces.

(b) Prove that \mathbf{R}^k is not diffeomorphic to \mathbf{R}^n if $k \neq n$.

Fix $p \in \mathbf{R}^k$. If $\phi : \mathbf{R}^k \to \mathbf{R}^n$ is a diffeomorphism, by by (a) $D\phi_p : T_p\mathbf{R}^k \to T_{f(p)}\mathbf{R}^n$ is a vector space isomorphism. Hence dim $T_p\mathbf{R}^k = k$ is equal to dim $T_{f(p)}\mathbf{R}^n = n$.

4. (a) Define the DeRham cohomology group $H^p(M)$.

$$H^{p}(M) = \frac{\ker \ d: \Omega_{M}^{p} \to \Omega_{M}^{p+1}}{im \ d: \Omega_{M}^{p-1} \to \Omega_{M}^{p}} = \frac{\{\text{closed } p\text{-forms}\}}{\{\text{exact } p\text{-forms}\}}$$

(b) Prove that a map $f: M \to N$ between manifolds induces a map $f^*: H^p(N) \to H^p(M)$ for each p.

Let $A^p(M) \subset \Omega^p_M$ denote the vector subspace of closed *p*-froms. For each $\omega \in A^p(N)$, the pullback $f^*\omega$ is closed (since $d(f^*\omega) = f^*d\omega = 0$), so defined a class $[f^*\omega]$ in $H^p(M)$. Define a map

$$L: A^p(N) \to H^p(M)$$

by $L(\omega) = [f^*\omega]$. This map is linear because

$$L(a\omega + b\omega') = [f^*(a\omega + b\omega')] = [af^*\omega + bf^*\omega'] = a[f^*\omega] + b[f^*\omega'].$$

It is also constant on equivalence classes in $A^p(N)$ because

$$L(\omega + d\eta) = [f^*(\omega + d\eta)] = [f^*\omega] + [f^*d\eta] = [f^*\omega] + [df^*\eta] = [f^*\omega].$$

Hence L induces a linear map $H^p(N) \to H^p(M)$.

Part 3. Do 4 of the remaining 7 longer problems (11 points each).

5. Use the Preimage Theorem (called the "Regular Level Set Theorem" in Lee) to prove that the graph of any smooth map $f: M \to \mathbf{R}$ between manifolds is a closed embedded submanifold of $M \times \mathbf{R}$.

Define $F: M \times \mathbf{R} \to \mathbf{R}$ by F(x,t) = f(x) - t. Then $f^{-1}(0)$ is the graph $G_f = \{(x,t) \in M \times \mathbf{R} \mid t = f(x)\}$, F is smooth (it is the sum of two smooth functions), and DF_p is surjective at each $p = (x,t) \in G_f$ because $DF_p(\frac{\partial}{\partial t}) = -\frac{\partial}{\partial t}$. Hence G_f is a closed embedded submanifold by the Regular Value Theorem.

6. Let S be the 2-manifold with boundary consisting of the points of the "monkey saddle" graph $\{(x, y, z) | y^3 - 3x^2y - z = 0\}$ whose (x, y) coordinates lie in the ellipsoidal region

$$E = \left\{ (x, y) \in \mathbf{R}^2 \, | \, x^2 + \left(\frac{y}{2}\right)^2 \le 1 \right\}.$$

(a) Write down a diffeomorphism $f: D \to S$, where D is the unit disk in \mathbb{R}^2 with coordinates (u, v).

Set $f(u, v) = (u, 2v, 8v^3 - 6u^2v)$. This is surjective because S is the graph $z = y^3 - 3x^2y$ over E, and is injective with inverse $f^{-1}(x, y, z) = (x, y/2)$. Thus f is a diffeomeorphism (f and f^{-1} are polynomials, so are smooth).

- (b) Orient S with the orientation form $\sigma = dx \wedge dy$, and D with the orientation form $du \wedge dv$. Is your map f positively oriented? $f^*\sigma = du \wedge d(2v) = 2du \wedge dv$. Since 2 > 0, f is positively oriented.
- (c) Compute $\int_{S} x \ dx \wedge dy + y^2 \ dx \wedge dz = \int_{S} x dx \wedge dy + y^2 dx \wedge dz = \int_{D} u (du \wedge 2dv) + (2v)^2 (du \wedge d(8v^3 6u^2v))$. Noting that $d(8v^3 6u^2v) = 24v^2 dv 12uv du 6u^2 dv$ and $du \wedge du = 0$, this reduces

to $\int_D 2(u+48v^4-12u^2v^2) du \wedge dv$. Note that $\int_D u = 0$ because u is an odd function. Now switch to polar coordinates by $u = r \cos \theta$, $v = r \sin \theta$ and $du \wedge dv = r dr d\theta$ (since f is positively oriented):

$$= 2 \cdot 12 \int_0^{2\pi} \int_0^1 r^4 (4\sin^4\theta - \sin^2\theta \cos^2\theta) \ r dr d\theta = \frac{24}{6} \int_0^{2\pi} 4\sin^4\theta - \sin^2\theta \cos^2\theta \ d\theta$$

Integrating by parts using $(\sin^3 \theta \cos \theta)' = -\sin^4 \theta + 3\sin^2 \theta \cos^2 \theta$, this becomes

$$4\int_0^{2\pi} 11\sin^2\theta\cos^2\theta \ d\theta = \int_0^{2\pi} 11(2\sin\theta\cos\theta)^2 \ d\theta = 11\int_0^{2\pi} \sin^2 2\theta \ d\theta = 11\pi.$$

- 7. This problem is about the definition of vector fields as derivations.
 - (a) Complete the definition: A vector field is a linear map $X : C^{\infty}(M) \to C^{\infty}(M)$ such that $X(fg) = Xf \cdot g + f \cdot Xg$ for all $f, g \in C^{\infty}(M)$.

Now let $\{x^i\}$ be local coordinates on an open set $U \subset M$.

- (b) Use your answer to (a) to show that $\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0$ for all i, j. $\frac{\partial}{\partial x^i}$ is the vector field defined by $\frac{\partial}{\partial x^i}(f) = \frac{\partial f}{\partial x^i}$. Then $\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right]f = \frac{\partial}{\partial x^i}\frac{\partial}{\partial x^j}(f) \frac{\partial}{\partial x^j}\frac{\partial}{\partial x^i}(f) = \frac{\partial f}{\partial x^i\partial x^j} \frac{\partial f}{\partial x^j\partial x^i} = 0$.
- (c) Show that if $X = \sum X^i \frac{\partial}{\partial x^i}$ and $Y = \sum Y^i \frac{\partial}{\partial x^i}$ then $[X, Y] = \sum \left(X^i \frac{\partial Y^j}{\partial x^i} Y^i \frac{\partial X^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}$.

Write $\frac{\partial}{\partial x^i}$, as ∂_i . Then $\sum_{i,j} [X^i \partial_i, Y^j \partial_j] f$ is $X^i \partial_i Y^j \partial_j f + X^i Y^j \partial_i \partial_j f - Y^j \partial_j X^i \partial_i f - Y^j X^i \partial_j \partial_i f$. Omitting the f, changing indices on the thrid term and using (a), this becomes

$$(X^i\partial_i Y^j\partial_j - Y^j\partial_i X^i)\partial_j + X^i Y^j[\partial_i,\partial_j] = (X^i\partial_i Y^j - \partial_j Y^j\partial_i X^i)\partial_j.$$

- 8. Let ω be an *n*-form on a compact *n*-dimensional manifold *M* with orientation form σ .
 - (a) Write down a precise definition of the integral $\int_M \omega$.

For an *n*-form η compactly supported on an open set $U \subset \mathbf{R}^n$, write $\eta = f \, dx^1 \wedge \cdots \wedge dx^n$ for some function f, and define $\int_U \omega$ to be the ordinary integral $\int f$. This is well-defined up to sign by the change-of-variables formula from calculus.

In general, choose smooth diffeomorphisms $\phi_{\alpha} : U_{\alpha} \to V_{\alpha}$ into M, with $U_{\alpha} \subset \mathbb{R}^n$ and $\{V_{\alpha}\}$ covering M. Let $\{\rho_{\alpha}\}$ be a partition of unity subordinate to $\{V_{\alpha}\}$. Define

$$\int_{M} \omega$$
 to be $\sum_{\alpha} \int_{U_{\alpha}} \pm \phi_{\alpha}^{*}(\rho_{\alpha}\omega)$

where, for each α , the sign \pm are determined by orientation of ϕ_{α} .

(b) Describe how to determine the sign.

For each α , $\phi_{\alpha}^* \sigma$ is an *n*-form on a domain in \mathbb{R}^n , so can be written $\phi_{\alpha}^* = g \, dx^1 \wedge \cdots \wedge dx^n$, and g vanishes nowhere on U_{α} because ϕ_{α} is a diffeomorphism. Then the sign is + if g > 0, and is - is g < 0 on U_{α} .

9. (a) What is the DeRham cohomology of the circle S^1 ? (do not prove).

$$H^p(S^1) = \begin{cases} \mathbf{R} & p = 0\\ \mathbf{R} & p = 1\\ 0 & p \neq 0, 1 \end{cases}$$

Use this and the Mayer-Vietoris sequence to find $H^*(S^2)$, as follows:

- (b) Draw a picture showing your choice of U and V. Take U to be the northern 3/4 of S^2 and V to be the southern 3/4 (or $U = S^2 \setminus \{\text{south pole}\}$ and $V = S^2 \setminus \{\text{north pole}\}$).
- (d) Write down the Mayer-Vietoris sequence relating $H^*(U), H^*(V)$ and $H^*(U \cap V)$.

 $\cdots \to H^p(S^2) \to H^p(U) \oplus H^p(V) \to H^p(U \cap V) \to H^{p+1}(S^2) \to \cdots$

(c) From (a) and the axioms of cohomology, what are $H^*(U), H^*(V)$ and $H^*(U \cap V)$? Note that U and V are contractible, and that $U \cap V$ retracts to the equator. Hence by the Homotopy axiom and the Point axiom

$$H^{p}(U) = H^{p}(V) = H^{p}(\text{point}) = \begin{cases} \mathbf{R} & p = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

and $H^*(U \cap V) = H^*(S^1)$ is an in (a).

(d) Use the resulting long exact sequence to find $H^*(S^2)$.

 S^2 is connected, so $H^0(S^2) = \mathbf{R}$. The Mayer-Vietoris sequence above is, in part,

$$0 \to H^0(S^2) \to H^0(U) \oplus H^0(V) \to H^0(U \cap V) \to H^1(S^2) \to H^1(U) \oplus H^1(V) \to H^1(U \cap V) \to H^2(S^2) \to 0.$$

Using (c) this reduces to

$$0 \to \mathbf{R} \to \mathbf{R} \oplus \mathbf{R} \to \mathbf{R} \to H^1(S^2) \to 0 \oplus 0 \to \mathbf{R} \to H^2(S^2) \to 0.$$

In particular,

- (i) $0 \to \mathbf{R} \to H^2(S^2) \to 0$ is exact $\Longrightarrow H^{12}(S^2) = \mathbf{R}$.
- (ii) For p > 2, $0 \to H^p(S^2) \to 0 \Longrightarrow H^p(S^2) = 0$.
- (iii) Counting dimensions in the exact sequence $0 \to \mathbf{R} \to \mathbf{R} \oplus \mathbf{R} \to \mathbf{R} \to H^1(S^2) \to 0$ shows that $H^1(S^2) = 0$.

Thus

$$H^p(S^2) = \begin{cases} \mathbf{R} & p = 0\\ \mathbf{R} & p = 2\\ 0 & p \neq 0, 2 \end{cases}$$

- 10. (a) Complete the definition: M be a smooth n-manifold with boundary if... See the definition in Lee.
 - (b) Now suppose that M is a smooth *n*-manifold with boundary. Show that ∂M is a smooth (n-1)-manifold without boundary and that the inclusion $\partial M \to M$ is a smooth embedding. See the definition in Lee.

- 11. The exterior derivative d is a linear map $d: \Omega^p_M \to \Omega^{p+1}_M$ for each $p \ge 0$ such that
 - (i) $d^2 = _0$
 - (ii) For $f \in C^{\infty}(M)$, the 1-form df is defined by df(X) = Xf for all vector fields X.
 - (iii) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^p \omega \wedge d\eta$ $\forall \omega \in \Omega^p_M, \eta \in \Omega^q_M.$

Prove that these properties determine d uniquely, as follows:

- (a) Fill in the blanks above.
- (b) Show that these properties determine $d\omega$ for a 1-form ω . Hint: write ω in local coordinates.

First suppose that ω has support in one coordinate chart $\{x^i\}$. For each *i*, define a function ω_i by $\omega_i = \omega(\frac{\partial}{\partial x^i})$. Then $\omega = \sum w_i \, dx^i$ as follows: for any vector field $X = \sum X^j \frac{\partial}{\partial x^j}$,

$$\omega(X) = \sum x^{j} \omega(\frac{\partial}{\partial x^{j}}) = \sum X^{j} \omega_{j}, \text{ while } \left(\sum w_{i} \, dx^{i}\right)(X) = \sum \sum \omega_{i} X^{j} dx^{i}(\frac{\partial}{\partial x^{j}}) = \sum \omega_{j} X^{j}.$$

Then by (i)–(iii), $d\omega = \sum d\omega_i \wedge dx^i - \omega_i ddx^i = \sum d\omega_i \wedge dx^i$; in particular, $d\omega$ is determined by (i)–(iii).

In general, let $\{U_{\alpha}\}$ be a coordinate charts that cover M with subordinate partition of unity $\{\rho_{\alpha}\}$. Then $\sum_{\alpha} \rho_{\alpha} = 1$, and hence $\omega = \sum \omega_{\alpha}$ where $\omega_{\alpha} = \rho_{\alpha}\omega$ is a 1-form supported on a coordinate chart. Then $d\omega = \sum d\omega_{\alpha}$ (by linearity), and each $d\omega_{\alpha}$ is determined by (i)–(iii) as above.

(c) Use induction to prove that these properties determine $d\omega$ for any p-form ω .

This is true for p = 0, 1 by parts (a) and (b). Assume inductively that it is true for p-1. Fix a *p*-form ω . As in (b), we can use a partition of unity to show that it suffices to assume that ω has support in a chart with coordinates x^i . For each *i*, let η_i be the (p-1) form

$$\eta_i = \iota_{\frac{\partial}{\partial x^i}} \omega$$

Then $\omega = \sum_{i} \eta_i \wedge dx^i$. Hence by (iii) and (i), $d\omega = \sum d\eta_i \wedge dx^i + 0$, so $d\omega$ is well-defined and unique by the induction hypothesis.