SOLUTIONS Dec 13, 2018

Math 868 — Final Exam

In this exam, all manifolds, maps, vector fields, etc. are smooth.

Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).
1. A map f: X — Y between manifolds is a submersion if

DF, : T,X — Ty,Y is surjective for all p € X.

2. A map 7 : V — M between manifolds is a (locally trivial) vector bundle of rank k if

each p € M has a neighborhood U such that 3 a diffeomorphism ¢ satisfying

(i) 7 0¢ ==, where 71 : U x R¥ — U is the projection onto the first factor, and

(ii) The restriction of ¢ to each fiber 7=1(z), x € U, is linear.

3. Let X and Y be vector fields on M with flows X <+ ¢; and Y <> ¢y. The Lie Derivative of Y in
the direction X is the vector field defined by

_d ()Y - Y Y — (@)Y
ExY = oY _ o or lim=—=— o lm——"——.

4. A orientation form for a manifold M is

an n-form o on M (where n = dim M) that vanishes nowhere (i.e. o(z) #0 Vo € M).

5. Two maps f,g: M — N are homotopic if there is a continuous map

H :[0,1] x M — N such that H(0,z) = f(z) and H(1,z) = g(z) for all z € M.

6. The Poincaré Lemma states that if a domain 2 C R" is

contractible, then every closed p-form, p > 0, is exact (or, equivalently, then H?(Q2) =0 Vp > 0.)

7. Let (M, g) be an n-dimensional compact Riemannian manifold with volume form dvol,.

The Hodge star operator is the linear map * : Qf, — Q)7 defined by w — *w, where *w is the
unique element of ;7 such that

nAxw = (n,w) dvol, Vn e Q.



Part 2. Do all 4 of the following Short Problems (8 points each).

1. Give a precise definition of a smooth manifold.

A smooth manifold M of dimension n is a metrizable (or second countable, Hausdorff) space with a maximal
collection of maps (“charts”) {¢q : Uy — V4 ’ a € A} indexed by a set A that satisfy:

Caution: In (c), one can’t say ¢, is a diffeomorphism because at that point, U,, is only a topological space.

2. Consider R* with coordinates (w, z,y,2). Let f : R? — R? be defined by f(u,v) = (u?v,v,u,v3).
Define a 2-form on R* by

a=w?dyAdz+ P dy A dw — 2yw dz A dw.

(a) Compute f*a.  Noting that dw = d(u?v) = 2uvdu + u?dv, dz = dv, dy = du, and dz = d(v?) =
3v2dv, and that du A du = 0 and dv A dv = 0, one calculates

a = (uv uN\3v°dv + u” au N U+ u”adv) — (2u”v)(3v° av) A (2uvau + v
F* 20)2 du A 302 d 3 du A (2uordt + u? d 2030) (302 dv) A (2uvdu + u3d0)
= Bu'v* +u®) du Adv — 12u*v* dv Adu
= (15u*v* +u®) du A do.

(b) Find a 1-form 3 on R* such that a = dg. There are many possible answers, including

4
B =wydz + yz dw and B =wydz —y3wdy.

3. (a) Suppose that f: M — N is a diffeomorphism between manifolds. Prove that at each point
p, Df, is an isomorphism of the tangent spaces.

By assumption, there is a smooth inverse map g : N — M with fog = Id. and go f = Id. By the
Composite Function Theorem,

D(fog)=DfoDg=D(Id)=1Id  andsimilarly — D(go f) = Id.

Hence Df, : T,M — Ty, N is a (linear) isomorphism of vector spaces.

(b) Prove that R” is not diffeomorphic to R™ if k # n.

Fix p € R*. If ¢ : R¥ — R" is a diffeomorphism, by by (a) D¢, : T,R¥ — T}, )R" is a vector space
isomorphism. Hence dim Tka = k is equal to dim Ty, R™ = n.



(a) Define the DeRham cohomology group HP(M).

ker d: Q) — Qﬂ_l _ {closed p-forms}
Cimd: Q%;l — O, ~ {exact p-forms}

HP(M)

(b) Prove that a map f: M — N between manifolds induces a map f*: HP(N) — HP(M) for
each p.

Let AP(M) C QF, denote the vector subspace of closed p-froms. For each w € AP(N), the pullback
f*w is closed (since d(f*w) = f*dw = 0), so defined a class [f*w] in HP(M). Define a map

L: AP(N) — HP(M)
by L(w) = [f*w]. This map is linear because

Llaw + ') = [*(aw + b)) = [af*w + bf*w'] = alf*w] + b[f*].
It is also constant on equivalence classes in AP(N) because

Liw+dn) = [f*(w+dn)] = [f*w] + [f*dn) = [f*w] + [df 0] = [*].

Hence L induces a linear map H?(N) — HP(M).

Part 3. Do 4 of the remaining 7 longer problems (11 points each).

. Use the Preimage Theorem (called the “Regular Level Set Theorem”’ in Lee) to prove that the
graph of any smooth map f : M — R between manifolds is a closed embedded submanifold of
M x R.

Define F : M x R — R by F(z,t) = f(x) —t. Then f~'(0) is the graph Gy = {(z,t) € M x R |t = f(x)},
F is smooth (it is the sum of two smooth functions), and DF), is surjective at each p = (z,t) € Gy because
DFp(g—t) = —%. Hence Gy is a closed embedded submanifold by the Regular Value Theorem.

. Let S be the 2-manifold with boundary consisting of the points of the “monkey saddle” graph
{(z,y,2)|y® — 322y — 2 = 0} whose (x,%) coordinates lie in the ellipsoidal region

E= {(as,y) eR2|2% + (g>2§1}.

(a) Write down a diffeomorphism f : D — S, where D is the unit disk in R? with coordinates
(u,v).

Set f(u,v) = (u,2v,8v% — 6u?v). This is surjective because S is the graph z = y* — 322y over
E, and is injective with inverse f~!(x,y,2) = (x,y/2). Thus f is a diffeomeorphism (f and f~! are
polynomials, so are smooth).

(b) Orient S with the orientation form o = dz A dy, and D with the orientation form du A dv. Is
your map f positively oriented? f*o = duAd(2v) = 2duAdv. Since 2 > 0, f is positively oriented.

(c) Compute / xde ANdy + y? de ANdz = [sxde Ndy +y*de Adz = [, u(duA2dv) + (20)*(du A
S
d(8v3 — 6u?v)). Noting that d(8v3 — 6u?v)) = 24v%dv — 12uvdu — 6u?dv and du A du = 0, this reduces



to [}, 2(u+ 480" — 12u*v?) du A dv. Note that [, u = 0 because u is an odd function. Now switch to
polar coordinates by u = rcosf,v = rsinf and du A dv = rdrdf (since f is positively oriented):

2 1 27
24
=2 12/ / r (4 sin? 0 — sin? 6 cos? 9) rdrdf = 5 4sin* @ — sin® 0 cos? 6 db
o Jo 0
Integrating by parts using (sin® @ cos§)’ = —sin® 6 4 3sin® # cos? 6, this becomes

27 27 27
4/ 11sin®@cos® 0 df = / 11(2sinfcosh)? df = 11/ sin?20 df = 11x.
0 0 0

7. This problem is about the definition of vector fields as derivations.

(a)

Complete the definition: A vector field is a linear map X : C*°(M) — C°°(M) such that
X(fg)=Xf-g+ [ -Xg forall f,g e C®(M).

Now let {2} be local coordinates on an open set U C M.

(b)

()

Use your answer to (a) to show that [%, %] = 0 for all ¢, j. 2 is the vector field defined by

9 __ of 0 o _ 90 0 a0 _ of af _
ox’ (f) — Oxt” Then [Bw”%]f - Ox’ﬁ(f) - Wﬁ(f) — 9x'0xi  Odxidxt 0.

Show that if X = ¥ X'-2 and Y = S V2 then [X,Y] =% (Xi%’;f - Yi%ﬁ) -

Write %, as d;. Then 3, [(X10;,YI0;]f is X'0,Y10; f + X'YI0,0; f —Y70;X'0; f — Y7 X'0;0; f. Omitting
the f, changing indices on the thrid term and using (a), this becomes

(Xio"!inaj — YJ@Xi)aJ + Xyd [8i, 8]] = (X’@»Yj — 6ij8iXi)6j.

8. Let w be an n-form on a compact n-dimensional manifold M with orientation form o.

(a)

Write down a precise definition of the integral / w.
M

For an n-form 7 compactly supported on an open set U C R", write n = fdxz' A --- A dz™ for some
function f, and define wa to be the ordinary integral [ f. This is well-defined up to sign by the
change-of-variables formula from calculus.

In general, choose smooth diffeomorphisms ¢, : Uy, — V,, into M, with U, C R™ and {V,} covering
M. Let {pa} be a partition of unity subordinate to {V,,}. Define

/Mw wbe 3 /U 6 {pu)

where, for each «, the sign + are determined by orientation of ¢,.

Describe how to determine the sign.

For each «, ¢} is an n-form on a domain in R™, so can be written ¢} = gdz! A--- A dx™, and g
vanishes nowhere on U, because ¢, is a diffeomorphism. Then the sign is 4+ if ¢ > 0, and is — is
g<0onU,.



9. (a) What is the DeRham cohomology of the circle S'? (do not prove).

R »p
HP(S') = <R p
0 »p

RN
o = o

,1

Use this and the Mayer-Vietoris sequence to find H*(S?), as follows:

(b) Draw a picture showing your choice of U and V. Take U to be the northern 3/4 of S? and V to
be the southern 3/4 (or U = S? \ {south pole} and V = $?\ {north pole}).

(d) Write down the Mayer-Vietoris sequence relating H*(U), H*(V) and H*(U NV).

<= HP(S?) —» HP(U) @ HP(V) - H/(UNV) — HPT(S?) — - ..

(c) From (a) and the axioms of cohomology, what are H*(U), H*(V) and H*(UNV)?

Note that U and V' are contractible, and that U NV retracts to the equator. Hence by the Homotopy
axiom and the Point axiom

R p=0,1

HP(U) = HP(V) = HP(point) = )
0 otherwise

and H*(UNV) = H*(S!) is an in (a).
(d) Use the resulting long exact sequence to find H*(S?).

S? is connected, so H°(S?) = R. The Mayer-Vietoris sequence above is, in part,
0— H°(S?) —» H'(U)oH(V) — HY(UNV) — H'(S*) - H' (U)oH (V) = H'(UNV) — H*(S*) = 0.
Using (c) this reduces to

0-R—-ROR—-R - H' (S -000—R— H*(S?) — 0.

In particular,
(i) 0 =R — H?(S?) — 0 is exact = H'2(S?) = R.
(ii) Forp>2,0— HP(S%) — 0= H?(5%) =0.
(iii) Counting dimensions in the exact sequence 0 - R - R@® R — R — H!(S?) — 0 shows that

HY(S?%) = 0.
Thus
R p=0
HP(S?) = {R p=2
0 p=#0,2

10. (a) Complete the definition: M be a smooth n-manifold with boundary if... See the definition
in Lee.

(b) Now suppose that M is a smooth n-manifold with boundary. Show that dM is a smooth
(n —1)-manifold without boundary and that the inclusion OM — M is a smooth embedding.
See the definition in Lee.



11. The exterior derivative d is a linear map d : Qﬁ/[ — QZ]’VJ[r ! for each p > 0 such that

(i)
(i)
(i)

=0
For f € C*°(M), the 1-form df is defined by df (X) = Xf for all vector fields X.

dlwAn) = doAn+ (=1)Pw Adn Vwe QF,,ne .

Prove that these properties determine d uniquely, as follows:

(a)
(b)

Fill in the blanks above.

Show that these properties determine dw for a 1-form w. Hint: write w in local coordinates.

First suppose that w has support in one coordinate chart {z?}. For each i, deﬁne a function w; by
w; = w(ay) Then w = Y w; da* as follows: for any vector field X = > X7-2 a7

Zx] o ZX wj, while (Zwl dx’ ) ZZwZXJdm ZwJXf
Then by (i)—(iii), dw = 3 dw; Adr® —w;ddx’ = 3" dw; Adx?; in particular, dw is determined by (i)—(iii).
In general, let {U,} be a coordinate charts that cover M with subordinate partition of unity {pq}.

Then )", po =1, and hence w = ) w, where w, = pow is a 1-form supported on a coordinate chart.
Then dw = dw, (by linearity), and each dw,, is determined by (i)—(iii) as above.

Use induction to prove that these properties determine dw for any p-form w.

This is true for p = 0, 1 by parts (a) and (b). Assume inductively that it is true for p— 1. Fix a p-form
w. As in (b), we can use a partition of unity to show that it suffices to assume that w has support in
a chart with coordinates x*. For each i, let 7; be the (p — 1) form

N =ty W
oz’

Then w = Y, m; Adz’. Hence by (iii) and (i), dw = Y dn; A da’ + 0, so dw is well-defined and unique
by the induction hypothesis.



