Math 309, Section 2

Solution to Supplemental Problem 4. First, row reduce:

$$
\left(\begin{array}{ll}
3 & 1 \tag{0.1}\\
9 & 5
\end{array}\right) \underset{R_{2}-3 R_{1}}{\approx}\left(\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right) \underset{\frac{1}{3} R_{1}}{\approx}\left(\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 2
\end{array}\right) \underset{\frac{1}{2} R_{2}}{\approx}\left(\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 1
\end{array}\right) \text { quad } \underset{R_{1}-\frac{1}{3} R_{2}}{\approx}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

For each step, write down the corresponding elementary matrix and its inverse:

| $R_{2}-3 R_{1}$ | $E_{1}=\left(\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right)$ | $E_{1}^{-1}=\left(\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right)$ | $\frac{1}{2} R_{2}$ |
| :--- | :--- | :--- | :--- |\(E_{3}=\left(\begin{array}{cc}1 \& 0

0 \& \frac{1}{2}\end{array}\right) \quad E_{3}^{-1}=\left($$
\begin{array}{ll}1 & 0 \\
0 & 2\end{array}
$$\right), ~ R_{1}-\frac{1}{3} R_{2} \quad E_{4}=\left($$
\begin{array}{cc}1 & -\frac{1}{3} \\
0 & 1\end{array}
$$\right) \quad E_{4}^{-1}=\left($$
\begin{array}{cc}1 & \frac{1}{3} \\
0 & 1\end{array}
$$\right)\)

Then, reading 0.1 starting from the A side, gives

$$
E_{4} E_{3} E_{2} E_{1} A=I
$$

Multiply both sides by A^{-1} to get $A^{-1}=E_{4} E_{3} E_{2} E_{1}$. Similar, reading 0.1 backwards (so the row operations are given by the inverse matrices, one sees that

$$
E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} I=A
$$

These last two formula express A and A^{-1} as products of elementary matrices.

Definition of a vector space

A vector space is a set V (whose elements are called vectors) endowed with

- a rule for addition that associates to each pair $\mathbf{x}, \mathbf{y} \in V$ an element $\mathbf{x}+\mathbf{y} \in V$, and
- a rule for scalar multiplication that associates to each $\mathbf{x} \in V$ and $r \in \mathbb{R}$ an element $r \mathbf{x} \in V$,
such that, for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{R}$,
A1. $\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$
A5. $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$
A2. $(x+y)+z=y+(x+z)$
A6. $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$
A3. \exists a vector $\mathbf{0} \in V$ s.t. $\mathbf{x}+\mathbf{0}=\mathbf{x}$
A7. $\alpha(\beta \mathbf{x})=(\alpha \beta) \mathbf{x}$

A4. For each $\mathrm{x} \in V, \exists$ an "opposite vector"

$$
-\mathbf{x} \in V \text { s.t. } \mathbf{x}+(-\mathbf{x})=\mathbf{0}
$$

A8. $1 \cdot \mathrm{x}=\mathrm{x}$.

Notes (a) These axioms implicitly assume that the properties of the real numbers, of sets, and of the symbol = (e.g. adding the same thing to both sides preserves equality) are known and will be used freely. Thus in proofs you will have occasion to use the abbreviations

$$
\mathbb{R} \text { Prop. } \quad \text { Set Prop. } \quad=\text { Prop }
$$

for "property of the real numbers", "property of sets" and "property of equality".
(b) When checking if a given set is a vector space, the two bulleted requirements are the most important.

From the axioms, one can derive numerous simple consequences that are useful in calculations. Each is proved from the axioms and from previously proved facts. Once a fact is proved, it gets added to our basket of "known facts" and can be used from then on.

